
Debreach: Mitigating Compression Side Channels
via Static Analysis and Transformation

Brandon Paulsen1, Chungha Sung1, Peter A.H. Peterson2, and Chao Wang1

1University of Southern California, Los Angeles, CA, USA
2University of Minnesota Duluth, Duluth, MN, USA

Abstract—Compression is an emerging source of exploitable
side-channel leakage that threatens data security, particularly
in web applications where compression is indispensable for
performance reasons. Current approaches to mitigating compres-
sion side channels have drawbacks in that they either degrade
compression ratio drastically or require too much effort from
developers to be widely adopted. To bridge the gap, we develop
Debreach, a static analysis and program transformation based
approach to mitigating compression side channels. Debreach
consists of two steps. First, it uses taint analysis to soundly
identify flows of sensitive data in the program and uses code
instrumentation to annotate data before feeding them to the
compressor. Second, it enhances the compressor to exploit the
freedom to not compress of standard compression protocols,
thus removing the dependency between sensitive data and the
size of the compressor’s output. Since Debreach automatically
instruments applications and does not change the compression
protocols, it has the advantage of being non-disruptive and
compatible with existing systems. We have evaluated Debreach
on a set of web server applications consisting of 145K lines of
PHP code. Our experiments show that, while ensuring leakage-
freedom, Debreach can achieve significantly higher compression
performance than state-of-the-art approaches.

I. INTRODUCTION

Compression is a technique for improving performance,
especially in web applications. For example, the DEFLATE [1]
compression format in HTTP [2] is used by 70% of the top one
million websites [3] because it reduces the size of web content
such as HTML, CSS and JavaScript by up to 70-80%. This
not only decreases latency and increases throughput, but also
reduces energy consumption [4] for battery powered devices.
DEFLATE uses two techniques: Huffman coding [5] and LZ77
matching [6], the latter of which is particularly effective for
web content. It replaces repeated strings with a reference to
an earlier copy in the input. For example, if the input is
“Bob is great, Bob is cool”, the output would be “Bob is
great, 〈14, 7〉cool” where the reference 〈14, 7〉 is interpreted
as go back 14 bytes and then copy 7 bytes. Web content has
many repeated strings, such as URLs and HTML tags; for
example, the string “wikipedia.org/wiki/” appears 96 times on
Wikipedia’s home page, which will be reduced in size by 85%.

Unfortunately, dictionary compression in general, and LZ77
in particular, introduces side channels that can be exploited
in partially chosen-plaintext attacks [7]–[10]. In such a case,
the attacker feeds a guessed text to the victim’s application,
which combines the text with its own sensitive text before
giving them to the compressor. When the guessed text matches
the sensitive text, the compressed file will be smaller due to

Original Program
(PHP code)

Sensitive Data Source
APIs: a(...), b(...)

Datalog
Facts

Datalog
Rules

Datalog Solver

Datalog-based Static Analysis

Code Instrumentation
Analysis

Instrumented Program
(PHP code)

Modified
Compressor

Runtime Protection

Fig. 1: The overall flow of our Debreach method.

LZ77. Since encryption does not hide size, this information
can be leaked to an attacker even if the compressed file is
encrypted before transmission. Consider the sensitive text SSN:
123456789 and the guessed texts SSN: 1234 and SSN: 1235.
The former will be a complete match, but the latter will not
include the last character (5). Since LZ77 references typically
have the same size, the former will be one byte smaller.

Compression side channels were first investigated by
Kelsey [7], who found a potential attack against encryption
that later was adapted to the real world. For example, Rizzo
and Duong [9] proposed an attack named CRIME for the
widely-used TLS (successor of the now-deprecated SSL); in
response to the risk and due to lack of better solution, the com-
munity accepted the solution of disabling TLS compression
entirely [11], which is unfortunate. Gluck et al. [8] proposed
BREACH, another refinement of Kelsey’s technique, which
exploits HTTP compression; in response, HTTP/2 altered
the compression algorithm to prevent side-channel attacks on
header data at the cost of compressibility [12]. Both CRIME
and BREACH require a passive eavesdropping point on the
encrypted connection to measure the encrypted data size;
Vanhoef and Goethem [10], [13], on the other hand, lifted
such a requirement by estimating the size through the time
taken for a request to complete.

Despite the severity of such security threats, there does not
yet exist a general approach that provides sound guarantees
about leakage-freedom while maintaining acceptable levels of
compression and run-time performance. To fill the gap, we
propose Debreach, an approach to mitigating compression
side channels in web server applications. Debreach can
provide security guarantees about protecting arbitrary web
content as opposed to protecting, e.g., only security tokens.
Furthermore, it does not require developers to manually

ar
X

iv
:1

90
9.

05
97

7v
1

 [
cs

.C
R

]
 1

2
Se

p
20

19

identify flows of sensitive data in the program; instead, it
uses a static analysis to track the sensitive data flow, and
based on the analysis, transforms the server program to allow
automated annotation of sensitive data at run time. In addition
to automation, the Debreach method provides leakage-free
guarantees and high compression performance at the same
time.

The overall flow is shown in Fig. 1, where the input consists
of the program and a set of sensitive APIs. For example, if
an API function retrieves sensitive entries from a database, it
will be provided as a sensitive data source. Inside Debreach,
a static taint analysis is used to identify flows of sensitive data
from sources to sinks, i.e., echo statements that construct the
HTML file to be sent to the client. The analysis is designed
to be sound in that it guarantees to include all sensitive data
flows. The result is used to rewrite the program code such that
it can, at run time, insert annotations for sensitive data before
feeding them to the enhanced compressor.

Our taint analysis uses the general framework of declarative
program analysis [14]–[17]. In this framework, the PHP pro-
gram is first traversed to produce a set of Datalog facts, which
encode the control and data flow structures of the program as
well as the sensitive data sources. The fixed-point computation
required by taint analysis is codified in a set of inference
rules, which are combined with the facts to form the entire
Datalog program. We then solve the Datalog program using
our Python-based solver which is optimized for solving these
rules, the output of which is a sound overapproximation of all
sensitive flows from sources to sinks. Finally, we perform a
code instrumentation analysis to determine the optimal points
to annotate the sensitive data, to ensure that data are properly
marked when they reach the compressor. The instrumented
program (PHP code), combined with our enhanced DEFLATE
compressor, can skip LZ77 and instead use Huffman coding
only for the marked data.

In contrast, none of the previous works on mitigating
compression side channels can provide soundness guarantees
about protecting arbitrary data. The mitigation adopted in
HTTP/2 [12], for example, protects only header data but not
the payload, while approaches based on randomly masking
sensitive data protect only security tokens [18], but not data
embedded in JavaScript and HTML [19]. Size-randomizing
techniques, while easily applicable, have also been shown to
be ineffective [20]. Finally, other approaches that exploit the
freedom to not compress [21], [22] either cannot protect arbi-
trary data [21] or do not provide soundness guarantees [22].
In addition, none of the existing techniques can perform
safe compression and at the same time avoid degrading the
performance to unacceptable levels. Debreach, in contrast,
is fully automated in generating sensitive data annotations
and the accuracy is almost as high as annotations created by
experts manually.

We have implemented Debreach and evaluated it on a set
of server applications consisting of 145K lines of PHP code.
The goal is to eliminate the dependence between compression
performance and sensitive data since it may be inferred or
observed by attackers. Our experiments show that Debreach

X

X1 = 12340

X2 = 12341

...

Xk = 12349

S = 1234567

Combine Compress Encrypt C

C1

C2

...

Ck

P

O = X · S O′

Fig. 2: The adversary model.

outperforms both SafeDeflate, a state-of-the-art technique that
does not even provide leakage-free guarantee, and Huffman
coding, another technique that disables LZ77 entirely, in terms
of compression performance. Our experiments also show that
Debreach prevents side-channel leaks in all applications,
including several that SafeDeflate cannot prevent.

To sum up, this paper makes the following contributions:
• We propose Debreach, the first automated approach to

mitigating compression side channels for arbitrary web
content with security guarantees.

• We implement Debreach in a tool for PHP-based web
server applications.

• We demonstrate, through experiments, that Debreach
outperforms state-of-the-art techniques in terms of com-
pression performance and security guarantees.

The rest of the paper is organized as follows. First, we mo-
tivate our work in Section II by explaining how compression
side channels are exploited. Then, we review the DEFLATE
compressor in Section III before presenting our enhancement.
Next, we present our static analysis in Section IV and code
instrumentation in Section V. We present our experimental
results in Section VI, review the related work in Section VII,
and then give our conclusions in Section VIII.

II. MOTIVATION

In this section, we explain what compression side-channels
are and how they are exploited.

A. The Adversary Model
First, we present an adversary model to illustrate the se-

curity risks. Suppose an attacker wishes to decrypt part of
an encrypted message C with some compressed plaintext O
produced by a procedure P , which takes an input string X .
Fig. 2 shows the scenario. The attack can be achieved if the
following conditions are met. (1) O contains some sensitive
string S of interest. (2) O contains some other input string
X . (3) P can be executed repeatedly with X chosen by the
attacker. (4) P uses some form of dictionary compression on
O. (5) The size of the C is visible to the attacker.

Conditions 1, 2 and 4 mean that X and S are always
compressed together. Conditions 3 and 5 mean that the attacker
can observe how different the compressed sizes are when
different choices of X are combined with S to form O.

As an example, consider the sensitive string S=1234567.
When X is 12344, LZ77 will encode the first four characters
of X with a reference; let this output be C1. When X is
12345, the first five characters will be encoded; let this output
be C2. All other content being equal, C1 will be one byte larger
than C2 because of how X is encoded. In general, the size
of C becomes smaller as X becomes more similar to S. This
information can be exploited to infer the content of S.

1 <?php

2 function htmlTag($tg, $data , $attrs)

3 {
4 $ret = "<".$tg." ";

5 $ret .= $attrs ;

6 $ret .= ">". $data ."</";

7 return $ret .$tg.">";

8 }
9 echo "<html>";

10 $entries = get_addressbook_entries() ; //taint source

11 foreach ($entries as $entry) {

12 ...
13 if (strlen($entry->name) > 20)

14 $name = substr($entry->name , 0, 20);

15 else

16 $name = $entry->name ;

17 echo htmlTag("a", //a sink of the tainted data

18 $name ,

19 "href=’/compose.php?sendto=" .

20 $entry->email . "’");

21 }
22 ...
23 echo "<input type=’hidden’ value=’";
24 echo $_SERVER["QUERY_STRING"];
25 echo "’ name=’query_string’ />";
26 ...
27 echo "</html>";

Fig. 3: Compression side channel in a PHP program that
creates an HTML page of a user’s email addressbook.

B. A Realistic Attack Example

We now show a scenario where the victim uses a webmail,
and the attacker wants to know who are in the victim’s ad-
dressbook. Since the webmail uses the DEFLATE compression
followed by encryption to process data passing between the
victim’s browser and the webmail server, and the attacker may
observe the size of the data in transition [7]–[10], there is a
side-channel leak. For example, if the attacker is on the same
network as the victim and tricks the victim into visiting a
malicious web page, he may leverage cookies in the browser
to send requests to the server on behalf of the victim.

Fig. 3 shows the server-side PHP code responding to such
a request, which generates the user’s email addressbook on
the returned HTML page. In PHP, the echo statements (e.g.,
at line 17) cause data to be compressed and then encrypted
before they are sent to the client.

The sensitive data are retrieved at line 10 using the API
function get_addressbook_entries(). Each $entry
is also considered sensitive. Following the data flow, we
identify a sink of the tainted data at line 17, which uses the
function htmlTag (defined at lines 2-8) to construct a string
and then feeds it to the echo.

Lines 23-25 print a hidden field to the HTML, containing
the query string of the request URL. Passing back the request
URL in a hidden field is common practice in server-generated
HTML pages, e.g., to redirect back to that URL after a
form’s input is handled. In this attack, the hidden field will
be exploited by the attacker to infer the sensitive data.

Email addr. Attacker’s guesses Compressed data
sendto=bob@test.com Iter. 1 sendto=a sendto=bob@test.com (23,7)a
sendto=bob@test.com Iter. 2 sendto=b sendto=bob@test.com (23,8)
sendto=bob@test.com Iter. 3 sendto=c sendto=bob@test.com (23,7)c

Fig. 4: Data containing a sensitive email address and three
attacker’s guesses lead to different compression sizes.

Now, we relate the example to the adversary model in
Section II-A: the PHP program is P , the email address is the
sensitive string S, the query string of request URL (hidden
field) is the input X , and the HTML is the output O.

The attacker causes the procedure P to execute by making
requests to the server with the desired X in the query string.
As mentioned earlier, this is possible if the attacker makes
requests from the victim’s browser, which has the victim’s
cookies and thus can make the requests appear to be authenti-
cated requests (however, the attacker will not see the content
of the response HTML because of the same-origin policy).
Nevertheless, the HTML file size is observable.

To understand how the attack works, consider Fig. 4 as
an example. To decrypt an email address, the attacker will
attempt to guess it, character by character. Assume that email
addresses are composed from the alphabet: [A − Za − z0 −
9 @.] and the addressbook contains an entry with the email
address bob@test.com. For simplicity, also assume it is the
only email address to be displayed on the HTML page.

The attacker can bootstrap with a known prefix: sendto=.
To determine the next character, the attacker sends 64 requests
to the server, one for each guess character in the alphabet
[A−Za−z0−9 @.] appended to the prefix. The first response
has only sendto= compressed using the reference (23,7),
whereas the second response has the longer string sendto=b
compressed using the reference (23,8). With the other guess
characters, the compressed data size will be the same as that
of character a. Therefore, b is the correct guess.

On each iteration, the attacker determines one character. If
the secret has N characters, the attack takes as little as N
iterations; this makes it extremely dangerous in practice.

We choose to use the above example because of its sim-
plicity and ease of understanding, but more refined attacks
also exist [8], [20]. Nevertheless, the simple example already
illustrates the risk of the compression side channel. Given that
70% of the top websites enable DEFLATE compression [3],
this is particularly alarming to the security-conscious.

C. Our Mitigation Technique
In Debreach, we take a two-pronged approach. First,

we enhance the compressor to exercise the freedom to not
compress for any input data surrounded by special markers.
Second, we use static analysis and code instrumentation to
identify flow of sensitive data through the program and au-
tomatically insert special markers. In Fig. 3, for example, it
would identify the echo of htmlTag at Line 17 as leaky.
Then, it would identify instrumentation points in the PHP
code (sensitive arguments $name and $entry->email to
htmlTag) for generating markers at run time.

TABLE I: Comparing our method to existing approaches.

Method Arbitrary
data?

Leak-free
Guarantee?

Fully
Automated?

High
Compression?

Debreach (our new method)
Keyword-based [22]
Masking-based [19]
Huffman-only [5]

Table I compares Debreach with state-of-the-art tech-
niques, which lack in performance, generality, or automation.

1) Keyword-based: Techniques such as SafeDeflate [22]
utilizes two kinds of keywords: a sensitive alphabet (A) and a
predefined dictionary (D) of non-sensitive strings. Compres-
sion of a sequence of characters L = l0l1...lm is allowed only
if it does not begin or end with a sensitive character in A, or it
matches a string in D. This characterization of sensitive strings
is unsound, and provides no security guarantee. For example,
a user may configure the alphabet A = [A−Za− z0− 9 @.]
to protect emails, but the match ’=bob@test.com’ is still
allowed under this configuration. Furthermore, keyword-based
techniques degrade the runtime performance and compression
ratio substantially. We shall demonstrate both problems exper-
imentally in Section VI.

2) Masking-based: Techniques such as CTX [19] generate
a random and reversible masking operation and apply it to
sensitive data before sending it to the client. On the client
side, special JavaScript code must be used as well to undo
the masking. The masked data must be enclosed in HTML
<div> tags with some unique ID attribute. This has two
drawbacks. First, it does not work for many applications,
including our example in Fig. 3 because inserting <div>
around bob@test.com in the URL would break the link. Fig. 5
shows the example HTML with the email address at Line 3 and
hidden field at Line 5. While one could mask the whole HTML
tag at Line 3, it would break the initial parsing of HTML. This
problem also applies to sensitive data in JavaScript code.

3) Huffman-Only: The naive approach to mitigating com-
pression side channels in DEFLATE is to disable LZ77 and
use Huffman coding only. This is guaranteed to be secure
because the only information that may be deduced from
the compressed file would be the symbol distribution, but
so far, no attacks have been reported to exploit the symbol
distribution. However, this approach has a high performance
penalty because, even in the best case, Huffman coding can
only reduce a single byte’s size by 62.5% (and on average
much lower), which is significantly worse than enabling LZ77.

Compared to these existing techniques, Debreach has the
advantage of protecting arbitrary web content soundly (with
a security guarantee) and more efficiently (in terms of com-
pression ratio) while requiring no manual effort. In Fig. 3, it
would only identify the email addresses as sensitive, and all
other web content would be free for compression.

III. ENHANCING THE COMPRESSOR

We first review the state-of-the-art DEFLATE compressor,
and then present our enhancement.

...
Bob Anderson
...
<input type=’hidden’ value=’sendto=b’ name=’query_string’/>
...

Fig. 5: HTML response with guess character b at line 4.

Algorithm 1: The DEFLATE compression procedure.
1: DEFLATECOMPRESS(input) {
2: buf ← LZ77MATCHING(input);
3: output← HUFFMANCODING(buf);
4: return output;
5: }

A. The Original Compressor
The DEFLATE compressor, shown in Algorithm 1, com-

bines Huffman coding [5] and LZ77 matching [6], and can be
found in various open-source libraries including zlib [23].

1) Huffman Coding: Given an input composed of symbols
from some alphabet, it assigns bit strings to symbols and then
encodes the input using these bit strings. It saves space by
assigning shorter bit strings to symbols used more frequently.
No bit string is a prefix of another bit string, which avoids
ambiguity when decoding bit strings back into symbols. Fig. 6
shows an example of applying Huffman coding to part of a
popular tongue-twister. There are two columns in the row of
Huffman coding: the right shows bit strings assigned to each
input symbol, based on the symbol count distribution, and the
left shows the encoding result.

2) LZ77 Matching: In dictionary compression, a set of
literal strings, called a dictionary, is stored in the compressed
file, and any input string that matches a dictionary string is
encoded as a reference. In LZ77 [6], the dictionary is the
input itself, and each reference can only point to locations
earlier in the input. The dictionary string is called a match
and the encoded data, or reference, is called the reproducible
extension. Fig. 6 illustrates LZ77 matching in the third row,
where the input has two redundant strings, she and lls. They
are encoded as references 〈13, 3〉 and 〈10, 3〉, respectively.

Input string to be compressed she sells seashells

Output of Huffman-coding only

Encoding Huffman Codes
11 100 00 1011 11 00 e = 00, h = 100
01 01 11 1011 11 00 l = 01, a = 1010
1010 11 100 00 01 01 11 s = 11, ' '= 1011

Output of LZ77 matching only she sells sea<13,3><10, 3>

Fig. 6: Example for Huffman coding and LZ77 matching.

B. Our Modified Compressor
Our modified LZ77-matching procedure includes a pre-

processing step, which identifies and removes the annotations
of sensitive data (in the form of special tokens). While
removing these special tokens, it also computes the necessary
metadata that indicate the locations of the sensitive data.
Viewing the compressor’s input as an array of bytes, the

metadata stores, for each index in the input buffer, its forward
distance to the next closest region of sensitive data.

The procedure is shown in Algorithm 2, where the metadata
nextTaint[i] denotes the distance from input[i] to the
next region of sensitive data (i.e. input[i + nextTaint[i]] is
sensitive). nextTaint[i]==0 means that input[i] is sen-
sitive. The procedure incrementally and forwardly considers
each index i in the input beginning from i = 0. When the
current index is not sensitive (lines 9-34), we first search
the previous input (i.e., input[0..i − 1]) for matches (lines
9-22). If a match is found, an LZ77 reference is output, and
i is incremented by the length of the match (lines 23-29).
Otherwise, i is incremented by 1, and the literal input byte is
output (lines 30-33).

To quickly find matches, a dictionary is maintained that
records the positions of previously seen strings. The dictionary
is updated with every string in the input buffer (lines 25-27 and
31), unless i is in a sensitive region (lines 5-8). The dictionary
is then queried for positions of candidates matches for the
current index (line 10). For compression ratio efficiency, a
minimum match length is defined (minMatch = 3 for both
Debreach and the original zlib), and for memory efficiency,
only strings of length minMatch are stored in the dictionary.
However, when searching for a match, we compute the maxi-
mum length (lines 12-16), so the best match is always found
in the previous input buffer.

1) On the correctness: The procedure is correct in that
LZ77 matches are not allowed with sensitive data. To prove
this, it suffices to show that neither of the two components
of an LZ77 match (the match and the reproducible extension)
may contain sensitive data. There are four cases to consider
where sensitive data may be included in a match, which
are illustrated in Fig. 7. Each case represents a state of
Algorithm 2, which consists of an input buffer, a region of
sensitive data shown in shaded red, a reproducible extension
(i and i+len), and a match (matchLoc and matchLoc+len).

First, observe that we never enter the match-searching block
(lines 9-34) when i is sensitive (i.e., nextTaint[i] == 0)
because of the guard at line 5. This ensures that the repro-
ducible extension cannot start in sensitive data (case 1 in
Fig. 7). Next, leveraging the fact that nextTaint[i] is the
(forward) distance to the closest region of sensitive data (i.e.,
input[i] to input[i + nextTaint[i] − 1] is not sensitive), it
also cannot extend into sensitive data (case 2). This is because,
when searching for a match (lines 9-22), we set a maximum
match length (line 11), which is the minimum of nextTaint[i]
and nextTaint[matchLoc]. This guarantees the reproducible
extension cannot extend into sensitive data.

In addition, a match cannot start in sensitive data (case 3).
Notice that the dictionary is only updated at lines 25-27 and 31
with the locations in the reproducible extension or the literal
byte, which we just showed cannot not contain sensitive data.
Since we only search the dictionary for match locations (line
10), the property then follows. Finally, the match also cannot
extend into sensitive data (case 4) since we set a maximum
match length (line 11).

The correctness then follows trivially, since the two com-

Algorithm 2: Our new LZ77 matching in Debreach.
1: LZ77MATCHING(input , nextTaint) {
2: initialize dict , output to empty
3: i = 0
4: while (i < input .length) {
5: if (nextTaint [i] ≤ minMatch) { // skip sensitive data
6: output += input [i]
7: i += 1
8: } else { // search for matches
9: bestLen = bestDist = 0

10: foreach (matchLoc in dict [input [i ..i +minMatch]]) {
11: maxLen = min (nextTaint [i], nextTaint [matchLoc])
12: matchLen = 0
13: while (input[i+matchLen] ==
14: input[matchLoc+matchLen]) {
15: matchLen += 1
16: }
17: len = min (maxLen,matchLen)
18: if (len > bestLen) {
19: bestLen = len
20: bestDist = i−matchLoc
21: }
22: }
23: if (bestLen > minMatch) {
24: output += 〈bestDist , bestLen〉
25: foreach (j ∈ i..i+ bestLen−minMatch) {
26: dict[input[j..j +minMatch]] = j
27: }
28: i = i+ bestLen
29: } else {
30: output += input [i]
31: dict[input[i..i+minMatch]] = i
32: i += 1
33: }
34: }
35: }
36: return output
37: }

Case 1

matchLoc

matchLoc + len

i

i + len

Case 2

matchLoc

matchLoc + len

i

i + len

Case 3

matchLoc

matchLoc + len

i

i + len

Case 4

matchLoc

matchLoc + len

i

i + len

Fig. 7: LZ77: four possible cases for sensitive data.

ponents of an LZ77 match cannot start in nor extend into
sensitive data.

2) On the security guarantee: Our enhanced compression
algorithm guarantees freedom from leaks due to LZ77 about
the literal content of the demarcated sensitive data. This
follows from the correctness of the algorithm since LZ77
matches cannot contain sensitive data, which implies there
can be no dependency (in the behavior of LZ77) between
an attacker-controlled plaintext and the literal content of the

sensitive data.
However, we do not attempt to eliminate other leaks about

other information, such as the length of the sensitive data. In
addition, we do not prevent purely size-based side channel
leaks, e.g., as in [24]. This is analogous to how a mitigation
technique for power-based side channels does not mitigate
leaks for timing side channels.

Our algorithm guarantees a form of non-interference [25]–
[27] about the LZ77 matching procedure. Informally, a prode-
dure guarantees non-interference if the values of secrets do not
influence its behavior in an observable way. Formally stated,
let P be our program (Algorithm 2), with public string inputs
X = {x1, ..., xn} and secret string inputs S = {s1, ..., sm},
i.e. P (X,S) is:

LZ77Matching(x1 · s1 · x2 · ... · sm · xn, nextTaint) ,

Then, let RP (X,S) be the information observable to the
attacker, which in our case is the length of the output of P
(references have size 1). The non-interference property that
Algorithm 2 guarantees is:

∀X,S, S′, such that ∀i |si| = |s′i|.
RP (X,S) = RP (X,S′) .

The above property says that, for any fixed public inputs X ,
changing the content of the secret variables does not affect
the attacker’s observations, however changing the length of
the secrets may.

IV. IDENTIFYING THE SENSITIVE DATA

We develop a conservative static analysis to identify the
sensitive data. Results of the analysis are then used to perform
code instrumentation, to be presented in Section V.

A. Sources of Sensitive Data

Our analysis relies on a set of sensitive APIs that act as
tainted sources. In Fig. 3, for instance, the sensitive function is
get_addressbook_entries(). For server applications
targeted by Debreach, the choice of sensitive APIs is often
obvious. For example, when the PHP code implements a
webmail application, sensitive data are the user’s email data
and the PHP program must connect to an email provider’s
IMAP server to retrieve email data. Therefore, the functions
that communicate with the IMAP server are sensitive.

The webmail application NOCC [28], in particular, uses
PHP’s IMAP module, and thus built-in functions such as
imap fetchbody and imap fetchheader are treated as sensi-
tive API functions. The application named Squirrelmail [29],
on the other hand, implements its own IMAP commu-
nication API; in this case, it uses two functions named
sqimap run command and sqimap run command list, which
are treated as sensitive API functions.

Other server applications may store sensitive data in a
database, for which PHP provides API functions. Therefore,
these APIs should be treated as sensitive. For example,
the addressbook applications iAddressbook [30] and Address-
book [31] store sensitive contact information in a database.

Database administration tools such as Adminer [32] also
have sensitive APIs. For example, Adminer [32] is designed
with the select function used as an API for accessing row data.
Thus, for Debreach, considering this as sensitive will achieve
the desired security and compression performance.

B. Datalog-based Taint Analysis

We follow a declarative program analysis framework [14]–
[17], which first traverses the PHP code to construct a Datalog
program, consisting of a set of facts and a set of inference
rules. The Datalog facts are relations that are known to hold
in the PHP code. The inference rules define how to deduce new
facts from existing facts. Since the analysis can be formulated
as a fixed-point computation, in Datalog, the inference rules
will be applied repeatedly until all facts are deduced. Consider
the example Datalog program below:

EDGE(n1, n2)
EDGE(n2, n3)
PATH(x, y) ← EDGE(x, y)
PATH(x, y) ← EDGE(x, z), PATH(z, y)

The first two lines define facts regarding nodes in a graph:
there is an edge from n1 to n2 and another edge from n2 to
n3. The next two lines define the inference rules, saying that
(1) if there is an edge from x to y, there is a path from x to y;
and (2) PATH is transitively closed. Any Datalog engine may
be used then to solve the program, the result of which is the
set of all pairs that satisfy the PATH relation. By querying the
result, we know if PATH(n1, n3) holds.

1) Generating Datalog Facts: First, we construct an inter-
procedural control flow graph (ICFG) from the input program
where each node in the ICFG corresponds to a program
statement. We perform flow- and context-insensitive analyses
to determine targets of method calls. We also hard-code data
flow information for PHP built-in string functions, such as
substr, to make our analysis more accurate.

Our analysis handles arrays and fields. For arrays, we create
additional program variables for statically known indexes up to
one dimension, and we assume unknown indexes could refer
to any of these variables. For fields, we take an inexpensive
object-insensitive and field-based approach as proposed by
Anderson [33]; it means we do not distinguish the same field
names from different objects. The field-based approach is
particularly appropriate because, in PHP applications, many
classes are only instantiated once in any execution (e.g., a
database handle class), or the same field of different heap
objects holds similar data (e.g., an email class).

Next, we traverse the ICFG to generate Datalog facts shown
as the relations in Fig. 8. The domains are V , the set of
variables or objects, S, the set of statements, and F , the set
of fields used in a program. We encode control flow as EDGE
between statements, control dependence as CTRLDEP between
statements, and leakage-prone branches as UNSAFEBRANCH.
The store of a variable or field of an object is encoded as
STOREVAR or STOREFIELD, and similarly for LOADVAR or
LOADFIELD. Finally, sensitive API calls and echo statements
are encoded as SOURCE and SINK, respectively.

EDGE(s1 : S, s2 : S) Control flow edge from statement s2 to statement s1
UNSAFEBRANCH(s1 : S) Branch statement s1 may cause implicit data flows
CTRLDEP(s1 : S, s2 : S) Statement s1 is control dependent on s2
STOREVAR(v1 : V, s1 : S) Variable or Object v1 is stored at statement s1
STOREFIELD(f1 : F, s1 : S) Field f1 of an object is stored at statement s1
LOADVAR(v1 : V, s1 : S) Variable or Object v1 is loaded at statement s1
LOADFIELD(f1 : F, s1 : S) Field f1 of an object is loaded at statement s1
SOURCE(s1 : S) Source of sensitive functions at statement s1
SINK(s1 : S) Sink (i.e., echo) is at statement s1

Fig. 8: Input relations for our analysis.

2) Generating Inference Rules: Our Datalog rules, shown
in Fig. 9, compute (1) the load of tainted data at an echo and
(2) dependencies for data originating from sensitive APIs.

TAINTEDVARFROM(v1, s1, s1) ← STOREVAR(v1, s1) ∧ SOURCE(s1)
TAINTEDVARFROM(v1, s1, s3) ← TAINTEDVARFROM(v1, s1, s2) ∧ EDGE(s2, s3)

∧ ¬ STOREVAR(v1, s2)
TAINTEDFIELDFROM(f1, s1, s1) ← STOREFIELD(f1, s1) ∧ SOURCE(s1)
TAINTEDFIELDFROM(f1, s1, s3) ← TAINTEDFIELDFROM(f1, s1, s2) ∧ EDGE(s2, s3)
TAINTED(s2) ← TAINTEDVARFROM(v1, s1, s2) ∧ LOADVAR(v1, s2)
TAINTED(s2) ← TAINTEDFIELDFROM(f1, s1, s2) ∧ LOADFIELD(f1, s2)
TAINTED(s3) ← TAINTEDVARFROM(v1, s1, s2) ∧ LOADVAR(v1, s2)

UNSAFEBRANCH(s2) ∧ CTRLDEP(s3, s2)
TAINTED(s3) ← TAINTEDFIELDFROM(f1, s1, s2) ∧ LOADFIELD(f1, s2)

UNSAFEBRANCH(s2) ∧ CTRLDEP(s3, s2)
TAINTEDVARFROM(v1, s1, s1) ← TAINTED(s1) ∧ STOREVAR(v1, s1)
TAINTEDFIELDFROM(f1, s1, s1) ← TAINTED(s1) ∧ STOREFIELD(f1, s1)
DATADEP(s1, s2) ← TAINTEDVARFROM(v1, s1, s2) ∧ LOADVAR(v1, s1)
DATADEP(s1, s2) ← TAINTEDFIELDFROM(f1, s1, s2) ∧ LOADVAR(f1, s1)
TAINTEDSINK(s1) ← SINK(s1) ∧ TAINTED(s1)

Fig. 9: Datalog rules for data dependency analysis.

Let us walk through the rules in Fig. 9 to better understand
our approach. The first and third rules capture when a variable
or field is assigned at a sensitive source statement. The relation
TAINTEDVARFROM(v1, s1, s2) means v1 defined in statement
s1 still holds sensitive data at statement s2, and similarly for
TAINTEDFIELDFROM. These two rules initialize the relation
for all stored variables/fields at source statements.

The second and fourth rules propagate these relations
through control flow graph edges. The difference is that
TAINTEDVARFROM can be blocked by a new assignment
(STOREVAR), but TAINTEDFIELDFROM cannot be blocked by
a new assignment of the field because we do not discriminate
different objects for the same field name.

The fifth through eighth rules initialize TAINTED(s1) when
tainted data is used either explicitly or implicitly, meaning s1
loads tainted variables. Then, the ninth and tenth rules create
new TAINTEDVARFROM and TAINTEDFIELDFROM relations
for the stored variables at tainted statements. The next two
rules infer DATADEP, where DATADEP(s1, s2) means s1 data-
depends on s2, which occurs when tainted data is propagated
from s1 to s2 and loaded at s2. Finally, TAINTEDSINK
represents when tainted data is used at a SINK statement, i.e.,
it may be sent through an echo statement.

Our approach shares the limitations of other static analysis
tools for dynamically typed languages such as PHP, e.g.,
unsoundness in the presence reflection [34]. However, for the
benchmarks used in our experiments, we have confirmed such
language features did not affect soundness of our analysis.

C. Implicit Flows

The key to high compression performance is proper tracking
of implicit data flows. Since web applications are string-
building programs at their core, tainted variables are frequently
used in branch conditions. However, naively tracking all these
implicit flows would result in over-tainting and low compres-
sion performance. Instead, we develop sufficient conditions
under which implicit flows can be ignored. Our conditions
label a branch as safe if all of the atoms of its predicate are:
• a variable (e.g., if ($var));
• comparing a variable to a hard-coded value;
• comparing to the length of variable; or
• checking the type of a variable.

We do not attempt to protect Boolean variables from im-
plicit data flows, for two reasons. First, even if we protect
them during compression, they may still be revealed through
purely size-based side channels (i.e., not due to compression).
Second, protecting them would prevent us from ignoring
frequently-occurring, performance-critical branches that do not
affect our security guarantee (specifically the first criterion
above).

D. Security Guarantee

The guarantee we aim to provide is that an attacker cannot
discover literal content of secret string type data. For example,
the branch at line 13 in Fig. 3 can be ignored, since it may
only reveal that the length of the secret was greater than 20
characters. Conversely, the case we do care about is when a
dynamically determined non-sensitive string (not originating
from a source) is compared with a sensitive string and then
eventually compressed, for example:

1 $tainted = sensitive_source();
2 $untainted = $_GET["cgi_param"];
3 if ($tainted == $untainted)
4 echo $untainted

Our analysis provides the security guarantee described
above given two assumptions. First, we assume that the truth
value of dangerous predicates such as the one above do not
become associated with the branches we ignore. For example,
we assume a dangerous predicate is not first assigned to
a variable, and subsequently used in a branch. Second, we
assume tainted data flows do not depend on dynamic features
such as reflection.

V. INSTRUMENTING THE SERVER PROGRAM

We instrument the program to allow it to generate annota-
tions of sensitive data at run time, prior to the compression.

A. Annotations

Annotations of sensitive data are special markers inserted
into the tainted string value. During the execution, the program
randomly generates a nonce of arbitrary length, and uses it to
enclose the sensitive string. For instance, in Fig. 3, it would
wrap the (sensitive) argument at line 18 with markers, e.g.,
"DBR{" . $name . "}DBR", where DBR is the nonce.

Algorithm 3: Computing the instrumentation points
1: INSTRANALYSIS(tsinks, DDG) {
2: instr pts = []
3: for each (sink ∈ tsinks) {
4: ctx = function of sink
5: instr pts + = FINDINSTR(sink, [], ctx, DDG)
6: }
7: return instr pts
8: }
1: FINDINSTR(cur, visited, ctx, DDG) {
2: preds = immediate predecessors of cur in DDG
3: if (preds == [])
4: return [cur]
5: preds = {p ∈ preds|p 6∈ visited}
6: visited + = preds
7: if (preds == [])
8: return []
9: else if (for all p ∈ preds, ISSAFE(p, DDG) is true) {

10: instr pts = []
11: for each (p ∈ preds)
12: instr pts + = FINDINSTR(p, visited, ctx)
13: if (any pt ∈ instr pts is not in ctx)
14: return [cur]
15: else
16: return instr pts
17: }
18: else
19: return [cur]
20: }

B. Efficient Code Instrumentation
Naively, we could annotate all tainted variables used at an

echo, however this may result in the amount of annotated data
to become unacceptably large and degrade the compression
ratio, e.g., in Fig. 3, where sensitive data in $entry are
combined with non-sensitive HTML tags.

Naively annotating the tainted source is also problematic
because markers inserted into the string may affect subsequent
manipulations, e.g., in Fig. 3, where an entry’s name is trun-
cated if it is longer than 20 characters (lines 13-16) using the
strlen and substr operations. Clearly, inserting markers
before these function calls changes their semantics.

To avoid both problems, we perform an analysis to deter-
mine the best instrumentation point. To this end, we consider
both performance, i.e., how much compression to maintain,
and safety, i.e., not breaking the program semantics.

Our analysis in Algorithm 3 takes as input the tainted
echos and the data dependence graph (DDG) computed earlier.
On each tainted echo, FINDINSTR is called to find a set of
statements (and variables) to instrument. FINDINSTR performs
a backward search along data dependence edges until it
encounters a stopping condition, which indicates the current
statement is an instrumentation point.

There are three stopping conditions, namely: (a) the current
statement has no predecessors, indicating we reached the
taint source (line 3), (b) we have already visited all of
the statement’s predecessors, indicating we have covered it
with another instrumentation point (lines 6-7), or (c) some
predecessor P is unsafe (line 9).

A statement is unsafe if one of two conditions hold: (1)
it contains an operation that may be broken by inserted
annotation, or (2) it may affect another statement that meets

1776

1814

16

52011

Fig. 10: Data dependence graph of motivating example.

condition (1). The check for condition (1) relies on a whitelist-
ing based approach, where all statements on the whitelist
are guaranteed to not be affected by inserting an annotation.
Generally speaking, condition (1) will not be satisfied (i.e., the
statement is safe) if a statement consists of only assignment,
concatenation, or PHP built-in functions that can never be
affected by inserted annotation.

In Fig. 3, statements in htmlTag are safe because they
only contain string concatenations, but lines 13 and 14 are not
safe because annotations may break the called functions. In
addition, line 11 is not safe because 13 and 14 depend on it.

Our analysis also limits itself to annotating within the
context (i.e., a function or top-level script code) of the tainted
sink (lines 13-16). This is to reduce over-annotating. For
example, real applications make use of utility functions for
generating HTML, similar to the htmlTag function in Fig. 3,
and they are used frequently with both sensitive and non-
sensitive data. Annotating inside these functions would likely
degrade compression performance.

We now return to the example in Fig. 3, whose DDG is
shown in Fig. 10. Nodes are labeled by line number, the
unsafe nodes for instrumentation are filled with red, and the
tainted echos are shown with a dashed circle. During code
instrumentation, we would step backward from node 17 and
branch at node 6. While considering node 18 along the top
branch, the safety check at line 9 of FINDINSTR would fail
because one of its predecessors (node 14) is unsafe. When we
reach node 20 along the bottom branch, the safety check would
fail again because node 11 is unsafe. So we would annotate
the variables at line 18 and 20 (blue nodes in the graph).

VI. EXPERIMENTS

We have implemented Debreach using a combination of
Java, Python, and Datalog. It requires the user to provide the
top-level directory of the PHP code and a set of sensitive
API functions, and then generates instrumented PHP code.
We leverage joern-php [35] to extract control-flow and def/use
Datalog facts from the PHP code. We extend joern-php to
handle arrays, fields, objects, globals, and pass-by-reference
parameters. Our static analysis is implemented using 2K lines
of Java code, 1.6K lines of Python code, which includes our
Datalog solver implemented in Python.

We conducted experiments to answer three questions:
• Are the static analysis and instrumentation components

in Debreach efficient in handling real web applications?
• Can Debreach achieve high compression performance?

In particular, how does it compare to state-of-the-art
techniques?

• Can Debreach eliminate the actual side channels?

TABLE II: Characteristics of the benchmark applications.
Application Lines of Code Requested Page Response HTML Size (KB)

Squirrelmail [29] 55,698

compose email 3
login 2

preferences 5
view email 9 - 29
view inbox 18 - 19

NOCC [28] 17,610

compose email 8
view email 24 - 102
view inbox 35 - 37

login 6
preferences 16

Adminer [32] 37,330

edit row 2 - 5
insert item 2 - 4

login 2
table data 11 - 66

table structure 6 - 7

iAddressbook [30] 16,690

addressbook 14
contact info 23 - 24
edit contact 48

login 2
new contact 33

Addressbook [31] 17,907

contact info 5
edit contact 11

login 4
new contact 3
addressbook 556

We answer the first two questions by comparing the com-
pression ratios of Debreach to the keyword-based SafeDe-
flate [22], Huffman-Only [5], and an Oracle version of De-
breach, which represents the practical limit of Debreach.

To produce the Oracle version of Debreach, we first
instrument the application with Debreach and then manually
inspect each instrumentation point to decide if it can be
optimized. If, for example, the instrumentation was due to a
false-positive tainting, we remove it. If it was a true-positive,
but a better instrumentation exists (that reduces the amount of
tainted data), we change it to the better one.

As for the third research question, we note that Debreach
guarantees to eliminate the compression side channel. Never-
theless, it is still informative to demonstrate on real applica-
tions. Thus, first, we show that leaks indeed exist and can be
exploited for some applications. Then, we show that leaks no
longer exist in Debreach-instrumented versions.

A. Experimental Setup

Our benchmark consists of five server applications with
145K lines of PHP code in total. The applications fall into
three categories: webmail, database administration, and ad-
dressbook. Our main selection criteria is that Debreach has
a practical use case for the application. The characteristics
are summarized in Table II, where Columns 1 and 2 show
the name and number of lines of code. For each application,
Column 3 shows the five pages chosen for experiment; they
are web pages that users are likely to visit. Column 4 shows
the size of the corresponding HTML response. Response size
can vary because of the application’s dynamic content. For
example, email bodies can vary widely in size.

To compare against the keyword-based SafeDeflate, we need
to configure its required sensitive alphabet and the dictionary
of allowed strings, as described in the original publication [22].
For Huffman-Only, we used the algorithm implemented in
zlib [23].

Next, we describe the applications in detail, and justify how
we configure and compare the different tools.

1) Squirrelmail and NOCC: These are webmail applica-
tions, where the user may want to prevent email data from
being leaked through the compression side channel. In both
applications, email data is retrieved from an IMAP server, so
for Debreach, we choose functions that communicate with
the IMAP server as sensitive API functions. For SafeDeflate’s
alphabet, we include alphanumerics, space, comma, and period
to protect natural language in email bodies, and we include
’/’, ’:’, ’%’, ’&’, ’=’, and ’?’ to protect links. In addition,
NOCC supports HTML in emails, so we add in ’<’, ’>’,
double quote, and single quote. Squirrelmail does not support
HTML, so we exclude these characters. For email addresses
we include ’@’ and ’ ’. While the alphabet provides protection
in most cases, email bodies allow nearly any printable ASCII
character, so SafeDeflate may still have leaks.

2) Adminer: This is a database administration (DBA) tool,
where the user may want to protect the rows of the database
tables from being leaked. Since Adminer is designed with a
function select that is used as an API for accessing row data,
for Debreach, we mark this as the sensitive API. We populate
the database with a standard SQL dataset that resembles an
employee database for a company. The table’s data is made
of alphanumerics and the hyphen character, so we configure
SafeDeflate with this alphabet.

3) Addressbook and iAddressbook: These are open-source
addressbook applications, where the user may want to pre-
vent the stored contact information from being leaked. Both
applications use a database for storing this information, so
we taint the query functions for both cases. We populate
the addressbook with 500 contacts including names, emails,
phone numbers, addresses, jobs, and titles generated using the
faker Node.js library. Accordingly, we configure SafeDeflate
with alphanumerics, ’-’, ’@’, ’.’, and ’ ’.

B. Results of Analysis and Instrumentation

First, we measure the performance of Debreach’s static
analysis and code instrumentation components. The exper-
iments were conducted on an Ubuntu 16.04 machine with
12GB of RAM and an Intel i7 processor.

Table III shows the results. Columns 1-3 show the appli-
cation name, page used in experiment, and total number of
echos involved. Columns 4-5 show the number of tainted echos
and instrumentation points for oracle. Columns 6-8 show the
results of Debreach, including the number of tainted echos,
the number of instrumentation points, and the analysis time.

The results show that Debreach is close to oracle in
identifying tainted echos and instrumentation points. For most
pages there is <15% false-positive rate in tainted echos. The
majority of false positives are due to implicit data flows. A
common case we observe are branches that compare sensitive
data to some configuration parameter pulled from a source that
we cannot prove to be non-sensitive. In addition, we show in
Fig. 11a the benefit of our implicit flow rules (Section IV-C),
without which there would be 100’s of false positives.

TABLE III: Performance of Debreach’s analysis and instru-
mentation. For NOCC, etc., all five pages are the same (*).

App Page Total
Echos

Oracle Debreach (new)
Tainted
Echos

Instr.
Points

Tainted
Echos

Instr.
Points Time (s)

Squirrelmail

comp-e 96 10 15 15 17 159
login 17 0 0 0 0 152
pref. 58 13 12 13 12 151

view-e 85 6 12 7 9 156
view-i 99 12 36 21 37 152

NOCC * 2423 97 107 112 114 167
Adminer * 809 26 44 30 48 99
iAddressbook * 763 83 104 84 106 129

Addressbook

addr-b 220 30 59 31 65 78
c-info 228 14 19 15 19 72
edit-c 521 40 43 41 44 69
login 220 30 59 31 65 78
new-c 521 40 43 41 44 69

0 100 200 300 400
0

100

200

300

400

Debreach

N
ai

ve
Im

pl
ic

it
Fl

ow
H

an
dl

in
g

(a)

10−3 10−2 10−1

10−3

10−2

10−1

Debreach

Sa
fe

D
efl

at
e

(b)

Fig. 11: (a) Tainted echos with and without Debreach’s im-
plicit flow. (b) Execution time (s): Debreach vs. SafeDeflate.

As for the time taken to complete the analysis and instru-
mentation, Column 8 in Table III shows that Debreach takes
< 3 minutes in all cases. Furthermore, it is scalable in handling
real applications.

C. Performance of Mitigated Application

Next, we evaluate the Debreach-instrumented applications.
We focus on the overhead in execution time and the change
in compression ratio. We present comparisons to other ap-
proaches as scatter plots. Points above the dashed blue-line
indicate Debreach outperforms the competing approach.

1) Execution Time: We measure the overhead of our in-
strumented PHP code and modified compressor separately, by
comparing with the original (and leaky) PHP code and original
zlib compressor [23]. The results are shown in Table IV.
Columns 3-5 compare the time in seconds of both the original
and instrumented PHP code. Columns 6-8 compare the time
in milliseconds of the original and modified compressor code.
We average the PHP code time over 100 executions, and the
compressor code over 1000 executions because it is a much
faster process and therefore affected more by noise.

For 22 of the 25 pages, the runtime overhead in PHP
is <3%, which is negligible. This is because the time is
generally dominated by network or database accesses, which
is also why the overhead is occasionally negative, since the
instrumentation overhead is small. In 24 out of 25 pages,
the original and modified compressors are within a 1/10th

of millisecond of each other, and for the remaining page,
Debreach is faster. All compressor results are statistically

TABLE IV: Runtime overhead of PHP code with compression.
App Page PHP-script Running Time (s) Compression Time (ms)

Orig. Instr. Overhead Orig. Modif. Overhead

Squirrelmail

comp-e 0.00082 0.00082 0.00% 0.1115 0.1248 11.88%
login 0.00036 0.00036 0.00% 0.0428 0.0485 13.41%
pref. 0.00070 0.00068 -2.86% 0.0830 0.0702 -15.49%

view-e 0.91540 0.98640 7.76% 0.2090 0.1594 -23.74%
view-i 1.25098 1.25102 0.00% 0.2556 0.2275 -11.00%

NOCC

comp-e 0.57718 0.55184 -4.39% 0.0234 0.0258 10.62%
view-e 3.45185 3.55438 2.97% 0.7342 0.6834 -6.91%
view-i 6.61984 6.68215 0.94% 0.5270 0.5171 -1.88%
login 0.00067 0.00067 0.00% 0.1072 0.1172 9.34%
pref. 0.59901 0.64006 6.85% 0.2428 0.2649 9.08%

Adminer

edit-r 0.96962 0.97202 0.25% 0.1095 0.1231 12.41%
isrt-i 0.00212 0.00214 0.94% 0.0978 0.1143 16.87%
login 0.00052 0.00053 1.92% 0.0303 0.0331 9.42%
tbl-da 0.46160 0.46117 -0.09% 0.5788 0.6129 5.90%
tbl-st 0.00240 0.00247 2.92% 0.0893 0.1002 12.20%

iAddressbook

addr-b 0.08181 0.08182 0.01% 0.2881 0.3128 8.58%
c-info 0.08213 0.08234 0.26% 0.3768 0.4248 12.72%
edit-c 0.08256 0.08244 -0.15% 0.6576 0.7498 14.01%
login 0.00078 0.00076 -2.56% 0.0325 0.0346 6.49%
new-c 0.08189 0.08195 0.07% 0.6465 0.7249 12.13%

Addressbook

c-info 0.00195 0.00198 1.54% 0.1262 0.1423 12.79%
edit-c 0.00209 0.00213 1.91% 0.1982 0.2399 21.03%
login 0.00092 0.00094 2.17% 0.0906 0.1009 11.38%
new-c 0.00191 0.00195 2.09% 0.1144 0.1345 17.53%
addr-b 0.16089 0.17013 5.74% 7.8697 4.9878 -36.62%

∗ NOCC makes many connections to the email server and each connection latency varies
every time, which explains the long execution time and big performance difference.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.2

0.4

0.6

Debreach

Sa
fe

D
efl

at
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.2

0.4

0.6

Debreach

H
uf

fm
an

Fig. 12: Comparison of compression ratios: Debreach vs.
SafeDeflate (left) and Debreach vs. Huffman-Only (right).

significant with p < 0.00001. Debreach is faster when the
amount of sensitive data is large because Huffman coding
is much faster than searching for LZ77 matches. Finally, we
compare Debreach with SafeDeflate in Fig. 11b and observe
that Debreach is 2-5 times faster.

2) Compression Ratio: Fig. 12 compares the compression
ratios of Debreach, SafeDeflate and Huffman-Only. Here,
compression ratio is computed as compressed size

original size . The x-axis
shows the compression ratio for Debreach, and the y-axis
shows the other. We note again here that SafeDeflate does not
even provide security guarantees.

Debreach is on average 15.6% better than SafeDeflate.
This is because SafeDeflate assumes any region of data
composed of sensitive alphabet characters is tainted, but non-
sensitive data invariably contain characters from the alphabet,
so SafeDeflate over-approximates. Debreach, in contrast, is
almost always more accurate. For example, login and pref-
erence pages either do not call sensitive API functions, or
their results do not flow into HTML response, which can be
identified by Debreach. Compared to the oracle, Debreach
is on average within 2.5%.

The reliance of SafeDeflate on a sensitive alphabet is espe-
cially problematic in NOCC, where sensitive data may contain
HTML. For example, on the inbox view page, Debreach

(a) Squirrelmail (b) Adminer

Fig. 13: Side-channel leak measurements in two case studies.

is able to precisely taint only the email header information
such as the sender/receiver email addresses, the email subject
lines, the sending date, etc. This accounts for a relatively
small portion of the data on the inbox page. Unfortunately,
SafeDeflate determines full HTML tags and URLs (which
make up the majority of any HTML page) are tainted as well.
This leads to poor performance (more than 25% worse in four
of five pages).

D. Security Evaluation

Now, we report the exploitable leaks in two applications
based on what has been described in Section II-A. That is,
the adversary is a man-in-the-middle and the victim visits an
adversary-controlled web page. For each leak, we identify a
target secret to extract (for Squirrelmail, it is one arbitrarily
chosen subject line from the inbox; for Adminer, it is a credit
card number stored in the database).

Fig. 13 shows the ability to guess the (n + 1)th byte of a
target secret given that the attacker knows the first n bytes.
The x-axis is the length n of the known prefix, and the y-axis
is the difference between the compressed sizes with correct
and incorrect guesses of the (n+1)th byte. Here, a difference
near one or greater indicates the leak is exploitable.

In both Squirrelmail and Adminer, there is a strong potential
for the application to be exploited once the adversary can
determine the first 3 bytes of the secret. After Debreach is
applied, however, the difference becomes less than or equal
to zero, which means the exploit is no longer possible. In
Squirrelmail, the correct guess is occasionally larger than
incorrect guesses since the encodings of Huffman coding
changes, which explains the negative difference. Therefore,
this does not leak information.

VII. RELATED WORK

We have already reviewed techniques that are the most
closely related to our work, including various attacks that
exploit the compression side channel.

Some components of compression side channel attacks have
been leveraged in other types of attacks. For example, the
timing of cross-site requests have been exploited to reveal
private information in web applications [36]–[38]. Chosen
plaintext attacks have been previously used to decrypt data
encrypted using CBC-mode encryption ciphers [39]–[41]. Re-
cent work has been done on analyzing implementations of
compression routines [42]–[44]. Zhou et al. [43], in particular,
use approximate model counting to estimate leakage, and

are able to apply their approach to a real-world compressor.
However, none of these works can mitigate the compression
side channel in a server application, like we do.

Besides compression, which is a relatively new source of
exploitable side channel information, other sources of side
channel information have been studied in the past such as
timing [45]–[49], cache behavior [50]–[52], and power [53]–
[56]. However, attacks and mitigations for these side channels
differ fundamentally from compression side channels.

Datalog-based program analysis has been applied in many
domains. For example, Whaley and Lam [14] used this
framework to perform context-sensitive alias analysis in Java
programs. Livshits and Lam [57] and Naik et al. [58] used
similar techniques to detect security errors and data-races.
Bravenboer and Smaragdakis [59] used it to perform points-to
analysis. Sung et al. used it to improve automated testing of
JavaScript-based web applications [60] and semantic diffing of
concurrent programs [61]. However, none of these prior works
used Datalog to mitigate compression side channels.

We also note here that we tried to use off-the-shelf solvers
such as Souffle [62] to solve our Datalog programs. While
Souffle finished in all cases, we found that our Python-based
solver finished much faster in some cases. This is because
our solver is geared toward iterative data-flow analysis (such
as our taint analysis) and only supports our rule set, whereas
Souffle is general-purpose and supports arbitrary rule sets. An
interesting research direction would be optimizing general-
purpose Datalog solvers such as Souffle for iterative data-flow
analysis.

Finally, while not the focus of our work, there is a significant
body of work focusing on the static analysis of PHP programs.
For example, Xie and Aiken [63] are among the first to
statically analyze PHP to detect SQL injection vulnerabilities.
Since then, many have proposed techniques to model features
such as aliasing [64], built-in functions [65], second-order
data flows [66], object injection [67], and client-side call
graphs [68]. Most recently, Alhuzali et al. [69] combine static
and dynamic analyses to synthesize exploits such as SQL
injection and cross-site scripting attacks.

VIII. CONCLUSIONS

We have presented a safe and efficient compressor-level
approach to mitigating compression side channel attacks.
Our approach is based on static taint analysis to safely find
tainted sinks and efficient code instrumentation techniques to
instrument proper program points. It gives a server application
the ability to automatically generate annotations of sensitive
data at run time. Moreover, it is fully compatible with existing
platforms. We have implemented our approach in the software
tool for PHP-based server applications and showed that our
approach is both efficient compared to state-of-the-art mitiga-
tion techniques, and can prevent leaks on a set of real-world
applications, while having minor performance overhead.

ACKNOWLEDGMENTS

This work was partially funded by the U.S. National Science
Foundation (NSF) under the grant CNS-1617203 and Office
of Naval Research (ONR) under the grant N00014-17-1-2896.

REFERENCES

[1] P. Deutsch, “Deflate compressed data format specification version 1.3,”
RFC Editor, Tech. Rep., 1996.

[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext transfer protocol – HTTP/1.1,” RFC Editor,
Tech. Rep., 1999.

[3] W3Techs. (2017) Usage of gzip compression for websites. [Online].
Available: https://w3techs.com/technologies/details/ce-gzipcompression/
all/all

[4] K. C. Barr and K. Asanović, “Energy-aware lossless data compression,”
ACM Transactions on Computer Systems, vol. 24, no. 3, pp. 250–291,
2006.

[5] D. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098 – 1101, 1952.

[6] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” Information Theory, IEEE Transactions on, vol. 23, no. 3,
pp. 337–343, May 1977.

[7] J. Kelsey, “Compression and information leakage of plaintext,” in Fast
Software Encryption, ser. Lecture Notes in Computer Science, J. Daemen
and V. Rijmen, Eds., 2002, vol. 2365, pp. 263–276.

[8] Y. Gluck, N. Harris, and A. Prado, “BREACH: Reviving the CRIME
attack,” 2013, black Hat USA.

[9] T. Duong and J. Rizzo, “The CRIME attack,” 2012,
ekoparty. [Online]. Available: https://docs.google.com/presentation/d/
11eBmGiHbYcHR9gL5nDyZChu -lCa2GizeuOfaLU2HOU/edit

[10] M. Vanhoef and T. V. Goethem, “HEIST: HTTP encrypted information
can be stolen through TCP-windows,” in Black Hat USA, 2016.

[11] J. Salowey. (2014, mar) Confirmation of consensus on removing
compression from TLS 1.3. [Online]. Available: https://www.ietf.org/
mail-archive/web/tls/current/msg11619.html

[12] R. Peon and H. Ruellan, “HPACK: Header compression for
HTTP/2,” RFC Editor, RFC 7541, 2015. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc7541.txt

[13] T. Van Goethem, M. Vanhoef, F. Piessens, and W. Joosen, “Request
and conquer: Exposing cross-origin resource size.” in USENIX Security
Symposium, 2016, pp. 447–462.

[14] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams,” in ACM SIGPLAN Notices,
vol. 39, no. 6, 2004, pp. 131–144.

[15] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots,
M. Carbin, and C. Unkel, “Context-sensitive program analysis as
database queries,” in ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, 2005, pp. 1–12.

[16] B. Livshits and M. Lam, “Finding security vulnerabilities in java appli-
cations with static analysis.” in USENIX Security Symposium, vol. 14,
2005, pp. 18–18.

[17] R. Mangal, X. Zhang, A. V. Nori, and M. Naik, “A user-guided approach
to program analysis,” in ACM Symposium on Foundations of Software
Engineering, 2015, pp. 462–473.

[18] L. Pomfrey, “django-debreach,” https://github.com/lpomfrey/django-
debreach, 2018.

[19] D. Karakostas, A. Kiayias, E. Sarafianou, and D. Zindros, “CTX:
Eliminating BREACH with context hiding,” in Black Hat EU, 2016.

[20] D. Karakostas and D. Zindros, “Practical new developments on
BREACH,” in Black Hat Asia, 2016.

[21] J. Alawatugoda, D. Stebila, and C. Boyd, “Protecting encrypted cookies
from compression side-channel attacks,” in International Conference on
Financial Cryptography and Data Security, 2015, pp. 86–106.

[22] M. Zieliski, “SafeDeflate: compression without leaking secrets,” Cryp-
tology ePrint Archive, Report 2016/958, 2016.

[23] J.-l. Gailly and M. Adler, “zlib,” 2013. [Online]. Available: zlib.net
[24] K. Zhang, Z. Li, R. Wang, X. Wang, and S. Chen, “Sidebuster:

automated detection and quantification of side-channel leaks in web
application development,” in Proceedings of the 17th ACM conference
on Computer and communications security. ACM, 2010, pp. 595–606.

[25] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations,” in 25th {USENIX} Security
Symposium ({USENIX} Security 16), 2016, pp. 53–70.

[26] A. Sabelfeld and A. C. Myers, “Language-based information-flow secu-
rity,” IEEE Journal on selected areas in communications, vol. 21, no. 1,
pp. 5–19, 2003.

[27] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in 1982 IEEE Symposium on Security and Privacy. IEEE, 1982, pp.
11–11.

[28] T. Gerundt, O. Heil, and S. Mazeland, “Nocc,” 2018. [Online].
Available: nocc.sourceforge.net

[29] “Squirrelmail,” 2011. [Online]. Available: squirrelmail.org
[30] “iaddressbook,” 2017. [Online]. Available: iaddressbook.org
[31] “Addressbook,” 2017. [Online]. Available: sourceforge.net/projects/php-

addressbook
[32] “Adminer,” 2018. [Online]. Available: www.adminer.org
[33] L. O. Andersen, “Program analysis and specialization for the C program-

ming language,” Ph.D. dissertation, University of Cophenhagen, 1994.
[34] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral,

B. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis,
“In defense of soundiness: a manifesto,” Commun. ACM, vol. 58, no. 2,
pp. 44–46, 2015.

[35] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi,
“Efficient and flexible discovery of PHP application vulnerabilities,” in
IEEE European Symposium on Security and Privacy, 2017, pp. 334–349.

[36] T. Van Goethem, W. Joosen, and N. Nikiforakis, “The clock is still
ticking: Timing attacks in the modern web,” in ACM SIGSAC Conference
on Computer and Communications Security, 2015, pp. 1382–1393.

[37] N. Gelernter and A. Herzberg, “Cross-site search attacks,” in ACM
SIGSAC Conference on Computer and Communications Security, 2015,
pp. 1394–1405.

[38] A. Bortz and D. Boneh, “Exposing private information by timing web
applications,” in International Conference on World Wide Web, 2007,
pp. 621–628.

[39] G. V. Bard, “A challenging but feasible blockwise-adaptive chosen-
plaintext attack on SSL,” in SECRYPT, 2006, pp. 99–109.

[40] A. Joux, G. Martinet, and F. Valette, “Blockwise-adaptive attackers
revisiting the (in) security of some provably secure encryption modes:
CBC, GEM, IACBC,” in Annual International Cryptology Conference,
2002, pp. 17–30.

[41] “CVE-2011-3389.” Available from MITRE, CVE-ID CVE-
2014-0160, 2011. [Online]. Available: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=cve-2011-3389

[42] L. Bang, A. Aydin, Q.-S. Phan, C. S. Păsăreanu, and T. Bultan, “String
analysis for side channels with segmented oracles,” in ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016,
pp. 193–204.

[43] Z. Zhou, Z. Qian, M. K. Reiter, and Y. Zhang, “Static evaluation of
noninterference using approximate model counting,” in IEEE Symposium
on Security and Privacy, 2018.

[44] Q.-S. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and T. Bultan,
“Synthesis of adaptive side-channel attacks,” in IEEE Computer Security
Foundations Symposium, 2017, pp. 328–342.

[45] T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and
S. Wei, “Decomposition instead of self-composition for proving the
absence of timing channels,” in ACM SIGPLAN Notices, vol. 52, no. 6,
2017, pp. 362–375.

[46] J. Chen, Y. Feng, and I. Dillig, “Precise detection of side-channel
vulnerabilities using quantitative cartesian hoare logic,” in ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 875–
890.

[47] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing side-
channel leaks using program repair,” in International Symposium on
Software Testing and Analysis, 2018, pp. 15–26.

[48] T. Brennan, S. Saha, T. Bultan, and C. S. Pasareanu, “Symbolic path
cost analysis for side-channel detection,” in International Symposium on
Software Testing and Analysis, 2018, pp. 27–37.

[49] M. Wu and C. Wang, “Abstract interpretation under speculative execu-
tion,” in ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2019, pp. 802–815.

[50] G. Barthe, B. Köpf, L. Mauborgne, and M. Ochoa, “Leakage resilience
against concurrent cache attacks,” in International Conference on Prin-
ciples of Security and Trust, 2014, pp. 140–158.

[51] C. Sung, B. Paulsen, and C. Wang, “CANAL: A cache timing analysis
framework via LLVM transformation,” in IEEE/ACM International
Conference On Automated Software Engineering, 2018, pp. 904–907.

[52] S. Guo, M. Wu, and C. Wang, “Adversarial symbolic execution for
detecting concurrency-related cache timing leaks,” in ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2018, pp. 377–388.

[53] A. G. Bayrak, F. Regazzoni, D. Novo, and P. Ienne, “Sleuth: Automated
verification of software power analysis countermeasures,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems,
2013, pp. 293–310.

https://w3techs.com/technologies/details/ce-gzipcompression/all/all
https://w3techs.com/technologies/details/ce-gzipcompression/all/all
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit
https://www.ietf.org/mail-archive/web/tls/current/msg11619.html
https://www.ietf.org/mail-archive/web/tls/current/msg11619.html
http://www.rfc-editor.org/rfc/rfc7541.txt
https://github.com/lpomfrey/django-debreach
https://github.com/lpomfrey/django-debreach
zlib.net
nocc.sourceforge.net
squirrelmail.org
iaddressbook.org
sourceforge.net/projects/php-addressbook
sourceforge.net/projects/php-addressbook
www.adminer.org
http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2011-3389
http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2011-3389

[54] H. Eldib, C. Wang, and P. Schaumont, “Formal verification of software
countermeasures against side-channel attacks,” ACM Trans. Softw. Eng.
Methodol., vol. 24, no. 2, pp. 11:1–24, 2014.

[55] J. Zhang, P. Gao, F. Song, and C. Wang, “SC-Infer: Refinement-based
verification of software countermeasures against side-channel attacks,”
in International Conference on Computer Aided Verification, 2018, pp.
157–177.

[56] J. Wang, C. Sung, and C. Wang, “Mitigating power side channels during
compilation,” in ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 590–601.

[57] B. Livshits and M. Lam, “Finding security vulnerabilities in Java
applications with static analysis,” in USENIX Security Symposium, 2005.

[58] M. Naik, A. Aiken, and J. Whaley, “Effective static race detection for
Java,” in ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2006, pp. 308–319.

[59] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification
of sophisticated points-to analyses,” in ACM SIGPLAN Conference on
Object Oriented Programming, Systems, Languages, and Applications,
2009, pp. 243–262.

[60] C. Sung, M. Kusano, N. Sinha, and C. Wang, “Static DOM event
dependency analysis for testing web applications,” in ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016,
pp. 447–459.

[61] C. Sung, S. K. Lahiri, C. Enea, and C. Wang, “Datalog-based scalable
semantic diffing of concurrent programs,” in IEEE/ACM International

Conference On Automated Software Engineering, 2018, pp. 656–666.
[62] B. Scholz, H. Jordan, P. Subotić, and T. Westmann, “On fast large-scale

program analysis in Datalog,” in International Conference on Compiler
Construction, 2016, pp. 196–206.

[63] Y. Xie and A. Aiken, “Static detection of security vulnerabilities in
scripting languages.” in USENIX Security Symposium, vol. 15, 2006,
pp. 179–192.

[64] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise alias analysis for
static detection of web application vulnerabilities,” in Workshop on
Programming languages and analysis for security, 2006, pp. 27–36.

[65] J. Dahse and T. Holz, “Simulation of built-in PHP features for precise
static code analysis.” in Network and Distributed System Security
Symposium, 2014.

[66] J. Dahse and T. Holz., “Static detection of second-order vulnerabilities
in web applications.” in USENIX Security Symposium, 2014, pp. 989–
1003.

[67] J. Dahse, N. Krein, and T. Holz, “Code reuse attacks in PHP: Automated
pop chain generation,” in ACM SIGSAC Conference on Computer and
Communications Security, 2014, pp. 42–53.

[68] H. V. Nguyen, C. Kästner, and T. N. Nguyen, “Building call graphs
for embedded client-side code in dynamic web applications,” in ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2014, pp. 518–529.

[69] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan, “NAVEX:
Precise and scalable exploit generation for dynamic web applications,”
in USENIX Security Symposium, 2018, pp. 377–392.

	I Introduction
	II Motivation
	II-A The Adversary Model
	II-B A Realistic Attack Example
	II-C Our Mitigation Technique
	II-C1 Keyword-based
	II-C2 Masking-based
	II-C3 Huffman-Only

	III Enhancing the Compressor
	III-A The Original Compressor
	III-A1 Huffman Coding
	III-A2 LZ77 Matching

	III-B Our Modified Compressor
	III-B1 On the correctness
	III-B2 On the security guarantee

	IV Identifying the Sensitive Data
	IV-A Sources of Sensitive Data
	IV-B Datalog-based Taint Analysis
	IV-B1 Generating Datalog Facts
	IV-B2 Generating Inference Rules

	IV-C Implicit Flows
	IV-D Security Guarantee

	V Instrumenting the Server Program
	V-A Annotations
	V-B Efficient Code Instrumentation

	VI Experiments
	VI-A Experimental Setup
	VI-A1 Squirrelmail and NOCC
	VI-A2 Adminer
	VI-A3 Addressbook and iAddressbook

	VI-B Results of Analysis and Instrumentation
	VI-C Performance of Mitigated Application
	VI-C1 Execution Time
	VI-C2 Compression Ratio

	VI-D Security Evaluation

	VII Related Work
	VIII Conclusions
	References

