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A b s t r a c t Background: Explicit patient consent requirements in privacy laws can have a negative impact
on health research, leading to selection bias and reduced recruitment. Often legislative requirements to obtain
consent are waived if the information collected or disclosed is de-identified.

Objective: The authors developed and empirically evaluated a new globally optimal de-identification algorithm
that satisfies the k-anonymity criterion and that is suitable for health datasets.

Design: Authors compared OLA (Optimal Lattice Anonymization) empirically to three existing k-anonymity
algorithms, Datafly, Samarati, and Incognito, on six public, hospital, and registry datasets for different values of k
and suppression limits.

Measurement: Three information loss metrics were used for the comparison: precision, discernability metric, and
non-uniform entropy. Each algorithm’s performance speed was also evaluated.

Results: The Datafly and Samarati algorithms had higher information loss than OLA and Incognito; OLA was
consistently faster than Incognito in finding the globally optimal de-identification solution.

Conclusions: For the de-identification of health datasets, OLA is an improvement on existing k-anonymity
algorithms in terms of information loss and performance.
� J Am Med Inform Assoc. 2009;16:670–682. DOI 10.1197/jamia.M3144.
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Introduction
There have been strong concerns about the negative impact of
consent requirements in privacy legislation on the ability to
conduct health research.1–18 Such concerns are reinforced by
the compelling evidence that requiring explicit consent for
participation in different forms of health research can nega-
tively impact the process and outcomes of the research itself
(see online Appendix A at www.jamia.org for the literature
search strategy and summary of articles): (a) recruitment rates
decline significantly when individuals are asked to consent
(opt-in vs. opt-out consent, or explicit consent vs. implied
consent), (b) in the context of explicit consent, those who
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consent tend to be different from those who decline consent on
a number of variables (age, sex, race/ethnicity, marital status,
rural vs. urban locations, education level, socioeconomic status
and employment, physical and mental functioning, language,
religiosity, lifestyle factors, level of social support, and health/
disease factors such as diagnosis, disease stage/severity, and
mortality) hence potentially introducing bias in the results,19 (c)
consent requirements increase the cost of conducting the re-
search and often these additional costs are not covered, and (d)
the research projects take longer to complete (because of the
additional time and effort needed to obtain consent, as well as
taking longer to reach recruitment targets due to the impact on
recruitment rates).

One approach to facilitate health research and alleviate some
of the problems documented above is to de-identify data
beforehand or at the earliest opportunity.20,21 Many research
ethics boards will waive the consent requirement if the data
collected or disclosed is deemed to be de-identified.22

A commonly used de-identification criterion is k-anonymity,
and many k-anonymity algorithms have been developed.23–32

This criterion stipulates that each record in a dataset is
similar to at least another k-1 records on the potentially
identifying variables. For example, if k � 5 and the poten-
tially identifying variables are age and gender, then a
k-anonymized dataset has at least 5 records for each value

combination of age and gender.
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In this paper we present a new k-anonymity algorithm,
Optimal Lattice Anonymization (OLA), which produces a
globally optimal de-identification solution suitable for
health datasets. We demonstrate on six datasets that OLA
results in less information loss and has faster performance
compared to current de-identification algorithms.

Methods
Background

Definitions
Quasi-identifiers. The variables that are going to be de-identified
in a dataset are called the quasi-identifiers.33 Examples of common
quasi-identifiers are34–38: dates (such as birth, death, admission,
discharge, visit, and specimen collection), locations (such as postal
codes, hospital names, and regions), race, ethnicity, languages
spoken, aboriginal status, and gender.

Equivalence Classes. All the records that have the same
values on the quasi-identifiers are called an equivalence class.
For example, all the records in a dataset about 17-year-old
males admitted on Jan 1, 2008 are an equivalence class.
Equivalence class sizes potentially change during de-identi-
fication. For example, there may be 3 records for 17-year-old
males admitted on Jan 1, 2008. When the age is recoded to a
five year interval, then there may be 8 records for males
between 16 and 20 years old admitted on Jan 1, 2008.

De-identification Optimality Criterion. A de-identification algo-
rithm balances the probability of re-identification with the amount
of distortion to the data (the information loss). For all k-anonymity
algorithms, disclosure risk is defined by the k value, which
stipulates a maximum probability of re-identification.39 There are

F i g u r e 1. Examples of value generalization hierarchies for thr
in years.
no generally accepted information loss metrics, although some
(discussed below) have been proposed and are used in practice.
One commonly used criterion to obtain an optimal balance
between disclosure risk and information loss is to first find the
de-identification solutions that have acceptable disclosure risk,
then among these the optimal solution is defined as the one with
minimum information loss.40

Requirements for De-identifying Health Data
In this section, we will define four important requirements on
a de-identification algorithm to ensure that it is practical for use
with health datasets. These requirements are not comprehen-
sive, but represent what we consider a minimal necessary set:
if they are not met then the de-identified data may not be
practically useful. They are a consensus based on the experi-
ences of the authors de-identifying and analyzing health data.
These requirements drove the algorithm we have developed.

Quasi-identifiers are represented as hierarchies: A common
way to satisfy the k-anonymity criterion is to generalize values
in the quasi-identifiers by reducing their precision.26 Quasi-
identifiers in health data that are used for research, public
health, quality improvement, and postmarketing surveillance
purposes can be represented as hierarchies. Examples of hier-
archies are illustrated in Figure 1. The precision of the variables
is reduced as one moves up the hierarchy. For example, a less
precise representation of a postal code “K1H 8L1” would be
the first three characters only: “K1H”. Similarly, a date of birth
can be represented as a less precise year of birth. Numeric
variables can also be represented hierarchically, for instance,
age can be converted to a 2-year interval, and then to a 5-year
interval. In the context of de-identification, this hierarchical
representation is the default approach used in the Canadian

mon quasi-identifiers: (a) admission date, (b) gender, and (c) age
ee com
Institutes for Health Research privacy guidelines.41 Therefore,
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a de-identification algorithm needs to deal with this hierarchi-
cal nature of the variables.

Discretization intervals must be definable by the end-user:
Some existing k-anonymity algorithms define a total order
over all values of a given quasi-identifier,27 and a quasi-
identifier can be recoded to any partition of the values that
preserves the order. If this partitioning is performed automat-
ically by a de-identification algorithm, it may produce intervals
of unequal sizes (for example, age may be automatically
partitioned to intervals such as �0–9� �10–12� �13–25�
�26–60�). The unequal interval sizes and the inability to
control these in advance by the user make the analysis of such
data quite complex and significantly reduce its utility. In
practice, the users of the data need to specify the interval sizes
that are appropriate for the analysis that they will perform.

Use global recoding instead of local recoding: Several of
the k-anonymity algorithms use local recoding.29–32,42 This
means that the generalizations performed on the quasi-
identifiers are not consistent across all of the records. For
example, if we are considering age, then one record may
have a 17 year old recoded to an age interval of �11–19�,
and another record with a 17 year old is recoded to the age
interval of �16–22�. If the variable was hierarchical, then
local recoding may keep one record with the age as 17, and
the other record recoded to the �16–20� interval. Such
inconsistency in constructing response categories makes the
data very difficult to analyze in practice using standard data
analysis techniques. Therefore, a more practical approach
would be to use global recoding where all the records have
the same recoding within each variable.

The de-identification solution must be globally optimal: A
globally optimal algorithm satisfies k-anonymity but at the
same time minimizes information loss. Some k-anonymity
algorithms do work with hierarchical variables but they use
heuristics or approximations to the optimal solution, and do
not produce a globally optimal solution themselves.25,28 Exces-
sive information loss can result in the loss of statistical power,
inaccurate analysis results, and inefficient use of data that was
costly to collect with possible inconvenience to patients. A
globally optimal solution mitigates these disadvantages.

Generalization and Suppression
The generalization hierarchies for the three quasi-identifiers in
Figure 1 can be represented as a lattice, as in panel (a) of Figure
2. The height of each row of nodes is shown on the left hand
side, ranging from zero to 7 in this case. The arrows illustrate
the possible generalization paths that can be taken through the
lattice. A series of connected paths from the bottom node to the
top node is a generalization strategy. Panel (b) of Figure 2 shows two
generalization strategies which pass through the node �d0, g1,
a2�. Each node in the lattice represents a possible instance of the
dataset. One of these nodes is the globally optimal solution and
the objective of a k-anonymity algorithm is to find it efficiently.

All equivalence classes in the dataset that are smaller than k are
suppressed.26 In Figure 2, 70% of the records were suppressed in
the dataset represented by node �d0, g0, a0� because these
records were in small equivalence classes. As more generalization
is applied, the extent of suppression goes down. For example,
node �d0, g0, a1�, with age generalized to 5-year intervals, has

only 30% of the records suppressed. Therefore, as we traverse any
generalization strategy from the bottom node to the top node,
there is a monotonically decreasing level of suppression.24

Suppression is preferable to generalization because the
former affects single records whereas generalization affects
all the records in the dataset.24 Therefore, when searching
for an optimal solution, a solution that imposes more
suppression would be selected instead of one that imposes
more generalization.

However, because of the negative impact of missingness on the
ability to perform meaningful data analysis,43 the end-users
will want to impose limits on the amount of suppression that is
allowed. We will refer to this limit as MaxSup. It is assumed
that the data analyst will specify MaxSup such that complete
case analysis can be performed or imputation techniques can
be used to compensate for the missing data.44

A node in the lattice is said to be a k-anonymous node if the
amount of suppression is less than MaxSup. If we let MaxSup �
5%, then the highlighted nodes in Figure 2 represent all the
possible k-anonymous nodes since they would all satisfy the
“suppression �5%” criterion. Once we have identified all
the k-anonymous nodes, we need to select the one with the
least information loss from among them.

The extent of suppression is not a good measure of infor-
mation loss because it has counter-intuitive behavior: as we
generalize more, suppression decreases (i.e., from a missing-
ness perspective, data utility improves). Whereas informa-
tion loss is intended to measure the reduction in the utility of
the data as it is generalized.30,45 This is shown in the lattice
of Figure 2, whereby maximum generalization node �d2, g1,
a4� has zero suppression, and node �d0, g0, a0� with no
generalization has the highest level of suppression at 70% of
the records. If we used the extent of suppression as an
information loss metric, then node �d2, g1, a4� would be
selected as the optimal node because it is k-anonymous and
has the lowest suppression. However, this is the node with
the maximum possible amount of generalization.

We need to consider other measures of information loss that
will allow us to efficiently identify the least generalized
node among the k-anonymous nodes.

Information Loss Metrics
Out of the highlighted nodes in the lattice, Samarati24

proposes that the node with the lowest lattice height should
be selected as the optimal solution. In our example of Figure
2, this would be node �d0, g1, a1�. The assumption being
made is that this solution balances the extent of generaliza-
tion with the extent of suppression.

The lattice height is not considered a good information loss
metric because it does not account for the generalization
hierarchy depths of the quasi-identifiers. For example, if we
generalize “Male” to “Person” then this is given equal weight
to generalizing age in years to age in five year intervals. In the
former case there is no information left in the gender variable,
whereas the five year age interval still conveys a considerable
amount of information and there are three more possible
generalizations left in the age hierarchy (see Figure 1).

An information loss metric that takes into account the height of
the generalization hierarchy is Precision or Prec. The Prec was
introduced by Sweeney46,47 as an information loss metric that

is suitable for hierarchical data. For every variable, the ratio of
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F i g u r e 2. (a) An example of a lattice of generalizations. Each node indicates the generalization level for each of the three
variables, and in parenthesis the percentage of suppression and the value of the Prec information loss metric. (b) The same lattice

showing two generalization strategies through it. The two strategies go through the node �d0, g1, a2�.
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the number of generalization steps applied to the total number
of possible generalization steps (total height of the generaliza-
tion hierarchy) gives the amount of information loss for that
particular variable. For example, in Figure 1 if age is general-
ized from age in years to age in five year intervals, then the
value is ¼. Overall Prec information loss is the average of the
Prec values across all quasi-identifiers in the dataset. As a
consequence, the more a variable is generalized, the higher the
information loss. Moreover, variables with more generalization
steps (i.e., more levels in their generalization hierarchy) tend to
have less information loss than ones with shorter hierarchies.
Using Prec as the information loss metric, the node �d2, g0, a1�
would be the optimal node rather than node �d0, g1, a1� in
Figure 2: the former has a Prec of 0.417 and the latter a Prec of
0.466.

Another commonly used information loss metric is the
Discernability Metric or DM.27,39,48–54 The discernability
metric assigns a penalty to every record that is proportional
to the number of records that are indistinguishable from it.
Following the same reasoning, DM assigns a penalty equal
to the whole dataset for every suppressed record (since
suppressed records are indistinguishable from all other
records). The formula for DM metric appears in online
Appendix D at www.jamia.org.

However, DM is not monotonic within a generalization
strategy due to the impact of the second term incorporating
suppression. The example in Figure 3 shows two possible
datasets for the �d0, g0, a0� and �d0, g0, a1� nodes, where
the latter is a direct generalization of the former. We assume
that we want to achieve 3-anonymity. For node �d0, g0, a0�
seven out of ten records do not achieve 3-anonymity, and
therefore the DM value is 79, whereas for node �d0, g0, a1�,
the DM value is 55. This reduction in information loss as we
generalize means that we would select the k-anonymity
solution with the maximum generalization as the best one,
which is counter-intuitive. It therefore makes sense not to
include the suppression penalty in DM. In other words, we
will use a modified version of DM*, as calculated in online
Appendix D.

The DM* information loss also solves a weakness with the
Prec metric in that Prec does not take into account the size
of the equivalence classes. If we generalize gender to
“Person” in Table a of Figure 3 to obtain Table c in Figure
3, then the Prec for Table (c) would be 0.33 and DM*
would be 16. However, Table b in Figure 3 has a Prec of
0.0833 and a DM* of 28. As can be seen in this case, the
higher Prec value had a lower DM* value. The reason is
that there are more equivalence classes in (b) than in (c),
and one of the equivalence classes is larger; the Prec
metric does not consider the structure of the data itself.

The concept behind DM has been criticized because DM
does not measure how much the generalized records ap-
proximate the original records.30,50 For example, suppose
we want to achieve 2-anonymity, and we have a single
quasi-identifier, age, and six records with the following age
values: 9, 11, 13, 40, 42, and 45. The minimal DM* value is
when all of the records are grouped into three pairs: �9,11�,
�13,40�, and �42,45�. The criticism is that the second pair
has a very wide range and that a more sensible grouping

would have only two equivalence classes: �9,11,13� and
�40,42,45�. In our case, since we assume that all data are
hierarchical and that the end-user would specify the appropri-
ate age grouping in the generalization hierarchy, the end-user
may decide that the �13,40� node in a value generalization
hierarchy is acceptable. Therefore, this particular criticism is
not applicable in the context that we are using DM*.

But the discernability metric has also been criticized because
it does not give intuitive results when the distributions of
the variables are non-uniform.55 For example, let’s say we
have a single quasi-identifier, gender, and two different
datasets with 1,000 records. The first has 50 male records
and 950 female, and the second has 500 males and 500
females. If gender is generalized to “Person”, then intu-
itively the information loss for the 950 females in the first
dataset should be quite low and the female records domi-
nate the dataset. However, the DM* value indicates that the
information loss for the nonuniformly distributed dataset is
much higher than for the uniformly distributed (second)
dataset (905,000 vs. 500,000). One information loss metric
that has been proposed based on entropy56,57 has recently
been extended to address the non-uniform distribution
problem.42,58 Formulas for non-uniform entropy calculation
appear in online Appendix D.

Returning to our example, the 50/950 male/female distrib-

F i g u r e 3. Three possible datasets representing different
nodes in the lattice. Dataset (a) represents node �d0, g0, a0�.
Dataset (b) represents node �d0, g0, a1� and is a generali-
zation of (a). Dataset (c) represents node �d0, g1, a0� and is
a generalization of (a). We assume that the objective is to
achieve 3-anonymity.
uted dataset has an entropy of 286 whereas the 500/500

http://www.jamia.org
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male/female distributed dataset has an entropy of 1,000.
Therefore, the information loss in the former dataset is much
lower, and this makes more intuitive sense.

The Monotonicity Property
The three information loss metrics that we have presented
above (Prec, DM*, and non-uniform entropy) are monotonic
within any given generalization strategy. This means that as
we move up the lattice along any generalization strategy the
information loss value will either remain the same or in-
crease.

This property is important because it means that if we have two
k-anonymous nodes in the same generalization strategy, then the
one lower in the strategy will always have a lower information
loss. We take advantage of this property in our algorithm de-
scribed below. Furthermore, it has been noted that this monoto-
nicity property is essential to produce de-identified datasets that
are more suitable for data analysis.42

While we have presented three common information loss
metrics that have the monotonicity property, this is not
intended to be a comprehensive list. There may be other
information loss metrics that also have this property.

The OLA Algorithm
In this section, we describe our new algorithm, OLA. We
assume that the dataset has more than k records. The
objective of OLA is to find the optimal node in the lattice.
The optimal node is k-anonymous and has minimal infor-
mation loss. For our purposes, information loss can be any
one of the three metrics described previously.

Main Steps
To find the optimal node, the algorithm proceeds in three
steps:

1. For each generalization strategy, conduct a binary search
to find all the k-anonymous nodes.

2. For each generalization strategy with k-anonymous
nodes, only the k-anonymous node with the lowest
height within the strategy is retained. For example, in
Figure 2 both nodes �d0, g1, a1� and �d0, g1, a2� are
k-anonymous, but they are both part of the same gener-
alization strategy and �d0, g1, a1� is below �d0, g1, a2�
in the lattice. This means that �d0, g1, a1� will have less
information loss on all the three metrics we considered.
The node �d0, g1, a1� is called a k-minimal node.

3. Now that we have the k-minimal nodes, these are com-
pared in terms of their information loss and the node with
the smallest information loss is selected as the globally
optimal solution. Because of the monotonicity property,
the k-minimal node with the smallest information loss
must also have the smallest information loss among all
k-anonymous nodes in the lattice.

The most time-consuming computations in OLA are in steps
1 and 3: (a) to find out, for any node, whether it is a
k-anonymous node, and (b) to compare the k-minimal
nodes. Therefore, to ensure efficiency our algorithm mini-
mizes the number of instances where it needs to determine
if a node is k-anonymous by predictively tagging the k-
anonymous status of nodes instead of computing it. Predic-
tive tagging is explained further below. OLA also minimizes
the number of nodes that need to be compared on informa-

tion loss (step 3) by ensuring that there are few k-minimal
nodes. The complete algorithm itself is described in pseudo
code in online Appendix B at www.jamia.org.

Predictive Tagging
Predictive tagging takes advantage of two properties of the
lattice. First, if a node N is found to be k-anonymous then all
nodes above N on the same generalization strategies that
pass through N are also k-anonymous. We therefore tag all
of these higher nodes as k-anonymous instead of computing
their k-anonymous status. For example, if we are evaluating
node �d0, g1, a2� in Figure 2 and determine that it is
k-anonymous, then the following nodes can immediately be
tagged as k-anonymous: �d0, g1, a3�, �d0, g1, a4�, �d1, g1,
a4�, �d2, g1, a4�, �d1, g1, a2�, �d1, g1, a3�, �d2, g1, a3�,
and �d2, g1, a2�. Second, if a node N is found not to be
k-anonymous, then all nodes below N on the same general-
ization strategies that pass through N are not k-anonymous.
We therefore tag all of these lower nodes instead of com-
puting their k-anonymous status. For example, if we are
evaluating node �d1, g0, a2� in Figure 2 and determine that
it is not k-anonymous, then the following nodes can imme-
diately be tagged as not k-anonymous: �d1, g0, a1�, �d0, g0,
a2�, �d0, g0, a1�, �d1, g0, a0�, and �d0, g0, a0�. Predictive
tagging results in a significant reduction in the amount of
computations that need to be performed, allowing the
processing of large lattices efficiently.

Algorithm Walkthrough
The algorithm implements a binary search through the
generalization strategies in the lattice. To illustrate our
algorithm using the lattice in Figure 2, we start our search
for the globally optimal node through the lattice at the
middle height (height equals 3), iterating through the nodes
starting from the left. The first node to be examined is �d0,
g0, a3�. The extent of suppression is computed and it is
determined that this is not a k-anonymous node and is
tagged as such. Using the logic of predictive tagging, all
nodes below �d0, g0, a3� on all generalization strategies
that go through that node are also by definition not k-
anonymous nodes: nodes �d0, g0, a0�, �d0, g0, a1�, And
�d0, g0, a2� can be tagged as not k-anonymous right away
without further computation.

We then focus on the sub-lattice whose bottom node is �d0,
g0, a3� and top node is �d2, g1, a4�. This sublattice is
illustrated in panel (a) of Figure 4. The same steps as above
are repeated. We go to the middle height in this sub-lattice,
which is node �d0, g1, a4�. The extent of suppression is
computed for this node, it is determined that this node is
k-anonymous, and it is tagged as such. This also means that
all other nodes above �d0, g1, a4� on all generalization
strategies that go through node �d0, g1, a4� are k-anony-
mous and can be tagged as such. In this case these are nodes
�d1, g1, a4� and �d2, g1, a4�.

We then focus on the sub-lattice whose top node is �d0, g1,
a4� and bottom node is �d0, g0, a3�. This sublattice is
illustrated in panel (b) of Figure 4. The same steps as above
are repeated. We go to the middle height in this sub-lattice,
which is node �d0, g0, a4�. The extent of suppression is
computed for this node, and it is determined that this node
is not k-anonymous. This also means that all other nodes
below �d , g , a � on all generalization strategies that go
0 0 4

through node �d0, g0, a4� are also by definition not

http://www.jamia.org


des ar

676 Emam et al., Globally Optimal k-Anonymity for De-Identification of Health Data

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/16/5/670/804120 by M
yongji U

niversity user on 11 February 2022
k-anonymous. In this case the nodes below it are: �d0, g0,
a3�, �d0, g0, a2�, �d0, g0, a1�, and �d0, g0, a0�.

We then proceed to the next node in the most recent
sub-lattice, which is node �d0, g1, a3�, which is in panel (b)
in Figure 4. We determine that it is k-anonymous and it is
tagged as such. But we can also determine that all other
nodes above �d0, g1, a3� on all generalization strategies
that go through node �d0, g1, a3� are also by definition
k-anonymous solutions and can be tagged. In this case these
are nodes �d0, g1, a4�, �d1, g1, a3�, �d1, g1, a4�, �d2, g1,
a3�, and �d2, g1, a4�.

Now we go back to the sub-lattice in panel (a) of Figure 4
and evaluate node �d1, g0, a4�. The suppression is higher
than 5% and it is therefore not k-anonymous, and it is tagged
as such. We can also determine that all other nodes below
�d1, g0, a4� on all generalization strategies that go through
node �d1, g0, a4� are also by definition not k-anonymous
nodes and are tagged as such.

This search process tags a significant percentage of the
nodes without evaluating them.

OLA also maintains a k-minimal solutions list of the k-
anonymous nodes that have the lowest height within their
generalization strategies. Whenever a node N is tagged as
k-minimal, OLA checks if there are other k-minimal nodes
above it on the generalization strategies that pass through N.
If there are, then these higher nodes are removed from the
k-minimal solutions list and node N is added to the list.

The last step in the algorithm is to compare the nodes in the
k-minimal solutions list on information loss and select the
one with the smallest value as the globally optimal solution.

Empirical Evaluation
We compare OLA to three other existing algorithms: Datafly,
Samarati, and Incognito. We include Datafly even though it
does not provide a globally optimal solution because it is one
of the few k-anonymity algorithms that has been used on
actual clinical datasets.59,60 Samarati23,24 is an often cited
example of a k-anonymity algorithm.61 Incognito62 can

F i g u r e 4. Panel (a) is a sub-lattice of the lattice in Figure 2
example of finding the k-anonymous nodes. The shaded no
produce globally optimal results. These three algorithms
perform global recoding and can handle hierarchical vari-
ables.

Algorithms
Datafly. Datafly uses a heuristic to find a k-anonymous data-
set.25 The quasi-identifier with the most distinct values is
selected, and generalized. If the resultant generalized dataset is
k-anonymous then the algorithm stops. If not, then the next
quasi-identifier with the most unique values is selected and the
process repeats as above. We modified the basic Datafly
algorithm so the stopping criterion is whether the amount of
suppression is less than MaxSup at each iteration.

In any iteration if there is more than one quasi-identifier with
the same number of distinct values, then one is selected at
random. In our implementation we ran Datafly 100 times and
averaged the results to take account of the randomness intro-
duced by the selection of a quasi-identifier when there are ties.

Since Datafly does not explicitly use an information loss
metric during its search, it will often produce a solution that
is not globally optimal on any chosen information loss
metric. In our evaluation we wanted to find out how far
Datafly is from the optimal solution.

Samarati. The Samarati algorithm finds the k-anonymous
nodes at the lowest height in the lattice through a binary
search.24 The search is based on the observation that if there
is no k-anonymous node at height h in the lattice then no
node at height h′ � h will be k-anonymous.

If H is the total height of the lattice, then it starts by
investigating all nodes at <H � 2=. If a node exists at this
height that is k-anonymous, then it will try the nodes at
height <H � 4=, otherwise it will try the nodes at height
<3H � 4=. This process repeats until it reaches the height at
which there is at least one node that is k-anonymous, and there
are no lower heights with k-anonymous nodes. If there are
multiple k-anonymous nodes at the lowest height, one of them
can be selected at random or specific preference criteria can be
used to select among them. We evaluated the Samarati algo-
rithm with Prec, DM*, and non-uniform entropy as the prefer-

l (b) is a sub-lattice of (a). Sub-lattices used in the illustrative
e k-anonymous.
. Pane
ence criterion. However, because the information loss compar-
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ison is only performed on the k-anonymous nodes at the
lowest height, this does not guarantee that the selected node
will be globally optimal on information loss.

Incognito. Incognito starts by considering all possible sub-
sets of the quasi-identifiers. From our example in Figure 2, it
would consider each lattice with a single quasi-identifier:
�Admission Date�, �Gender�, and �Age� separately,
then lattices with all combinations of two quasi-identifiers:
�Admission Date, Gender�, �Admission Date, Age�, and
�Gender, Age�, and finally lattices with all three quasi-
identifiers: �Admission Date, Gender, Age�.

Incognito takes advantage of two optimizations. First, when
evaluating nodes in each one of these lattices, nodes that are
above k-anonymous nodes in the same generalization strat-
egies are tagged as k-anonymous. Second, if a node is not
k-anonymous in a smaller quasi-identifier subset, then it will
by definition not be k-anonymous in a larger subset of the
quasi-identifiers. This means that the lattices for larger
subsets of quasi-identifiers can be pruned. In our example,
we found that all the nodes in the single quasi-identifier
lattices are k-anonymous: �Admission Date�, �Gender�,
and �Age�. Therefore, none of these nodes are eliminated.
However, when considering lattices with pairs of quasi-
identifiers, the following five nodes were not k-anonymous:
�d1, g0�, �d0, go�, �d1, a0�, �g0, a0�, and �d0, a0�.
Consequently, all nodes containing these generalizations are
pruned from the lattice with the three quasi-identifiers.

Incognito would then proceed evaluating the nodes starting
from the bottom of the lattice and moving upwards breadth
first, tagging the generalizations of k-anonymous nodes that
are found. This overall approach results in a significant
reduction in the number of nodes that need to be evaluated.

The k-anonymous nodes in the full three quasi-identifier
lattice are compared on information loss and the node with
the lowest value is selected. This selected node will have the
lowest global information loss and is therefore the optimal
solution.

There are multiple versions of Incognito. The version we
tested is called “Super Root Incognito” as it was shown by
the authors to have the best performance.62

Evaluations
Comparisons. We perform four comparisons of OLA’s per-
formance with the above three algorithms on the quality of
the results (i.e., information loss) and on its practical utility
(i.e., speed and time it takes to produce a result).

In the first evaluation we compare the information loss from
using Datafly and Samarati to the globally optimal solution.
Since Datafly and Samarati do not guarantee a globally
optimal solution on our three information loss metrics, we
wanted to find out how far they are from this optimal
solution. If these two algorithms produce solutions that are
sufficiently close to this optimal solution in practice, then a
case can be made for using them given that they are simple,
well established and understood.

We do not evaluate Incognito on information loss with respect
to proximity to an optimal solution because it already finds the
globally optimal solution on the three information loss metrics,

and hence gives the same solution as OLA.
We also compare the time it takes for Datafly and Samarati
to find a solution in seconds based on the same hardware
configuration and datasets. A considerable amount of effort
was spent on optimizing the implementation of both algo-
rithms to ensure that the comparison is fair.

The third evaluation compares the theoretical speed perfor-
mance of OLA with Incognito. Given that Incognito and OLA
both produce the same globally optimal solution, the question
is whether their performances are different. If OLA performs
faster, then a case can be made for using it instead of Incognito.

The final comparison is of the time in seconds it takes OLA
and Incognito to produce results. This comparison high-
lights the practical utility of the algorithms on realistic and
large datasets, and re-enforces the results of the theoretical
speed performance.

Datasets. The six datasets used are summarized in Table 1
(found in online Appendix C at www.jamia.org). These include
datasets that are publicly available as well as hospital and
registry datasets. These vary in size, and number and type of
quasi-identifiers. The quasi-identifiers are quite typical of what
is seen in realistic situations.35,36,63,64

We included public datasets in our analysis to facilitate the
replication of the results by others and because they had
quasi-identifiers that are quite typical of those found in
health datasets that are often disclosed. The hospital and
registry datasets are typical of the types of data that would
be de-identified in practice before disclosure: the emergency
department data were being disclosed for syndromic sur-
veillance, the pharmacy data were being disclosed to a
commercial data aggregator,65 and the provincial birth reg-
istry (Niday) was being disclosed to researchers.

Study Points. In practice, a minimal value of k � 3 is
sometimes recommended,66–69 but more often a value of
k � 5 is used.70–79 To ensure a reasonable amount of
variation in our analysis we use values of k between 2 and
15 inclusive. For each dataset the maximum suppression
(MaxSup) was set at 1, 5, and 10% of the total number of
records.

Measurement

Information Loss
The three information loss metrics described earlier were
measured. Since they are unitless, there are no generally
accepted absolute benchmarks for their interpretation, and
our interest is in determining how far they are from the
globally optimal (which is the minimum possible) informa-
tion loss, we defined relative information loss measures. The
baseline for the relative measure was the information loss
from the globally optimal solution. The globally optimal
solution was generated using a “brute force” approach of
evaluating all the nodes in the lattice, and provides the gold
standard to compare against. The brute force approach is
only useful for evaluation purposes to generate a gold
standard as it is extremely slow.

For each metric, we used the gold standard value as the
baseline, and the relative information loss values for Datafly
and Samarati were represented as a percentage from this
baseline. For example, if Datafly has an information loss
value of 100% it means that Datafly has the globally optimal

(i.e., minimal) information loss value. Alternatively, if it is
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200% then that means the information loss for Datafly is
twice as large as the globally optimal value. Relative infor-
mation loss is always greater than 100%.

Performance
The speed of Datafly and Samarati is computed in seconds
to produce a result. This is the time as perceived from an
end-user perspective, and therefore includes all the prepro-
cessing and reporting time.

We also compare OLA and Incognito in terms of seconds to
produce a result. However, such a comparison would be
perceived as inherently biased because we would be expected
to put more effort optimizing the implementation of OLA.
Therefore, we also measure the amount of computations that
are inherent to the OLA and Incognito algorithms rather than
their implementations. Below we explain how the amount of
inherent computation in both algorithms can be measured.

The two most time-consuming activities in all the algorithms
that navigate the generalization lattice, such as OLA and
Incognito, are (a) evaluating each node to determine
whether it is k-anonymous or not, and (b) comparing all the
nodes on information loss.

Number of Nodes. An obvious way to compare the algo-
rithms is to count the number of nodes that need to be
evaluated as to whether they are k-anonymous or not. The
two algorithms use different approaches to minimize the
number of nodes to evaluate by predictively tagging nodes
and working up from smaller lattices.

The Complexity of Evaluating k-Anonymous Nodes. The com-
plexity of evaluating if a node is k-anonymous is not uniform
because the nodes vary in terms of the number of quasi-
identifiers being generalized and the number of records being
evaluated. A performance measure that takes into account the
complexity of each node’s evaluation is needed. We propose
such a node complexity metric below.

Evaluating whether a node is k-anonymous consists of three
tasks:

1. Generalizing the quasi-identifiers.
2. Computing the new equivalence classes on the general-

ized quasi-identifiers.
3. Summing the number of records in equivalence classes

that are smaller than k.

Our node complexity metric takes into account these three
tasks and in practice we have observed that it matches well
the actual timing in seconds for both algorithms.

Let each node in a lattice L be indexed by its height h and
position from the left p. Each node will have a specific
number of quasi-identifiers JL,h,p. As noted above, Incognito
will create multiple lattices for an increasing number of
quasi-identifiers and therefore the nodes across lattices will
differ in their JL,h,p value, but in OLA this value is fixed
because we have only one lattice. For example, in our lattice
in Figure 2, JL,h,p � 3.

Not all the quasi-identifiers will be generalized as we move
up the lattice. For example, when we want to evaluate node
�d0, g1, a0� then we would take node �d0, g0, a0� and only
generalize the second quasi-identifier. We let J′L,h,p denote
the number of quasi-identifiers that need to be generalized.

For a given node, it is always the case that J′L,h,p � JL,h,p.
Each node is associated with a particular instance of the
data. The data at each node are represented as a frequency
set.62 This means that we represent the data by the equiva-
lence classes and their counts. For example, Figure 5 is the
frequency set for Figure 3. The generalization in Figure 5b
has fewer records than (a).

Let the size of the original frequency set be given by NL,h,p
and the size of the generalized frequency set be given by
N′

L,h,p. For instance, in Figure 5 the original frequency set in
panel (a) had NL,h,p � 8, and the generalized frequency set
in panel (b) had N′

L,h,p � 5.

To generalize we need to go through all the records in the
original frequency set. The amount of computation needed to
generalize the frequency set is proportional to J′L,h,p � NL,h,p. In
the example of Figure 5, the generalization task is given a score
of 1 � 8 � 8. If a given node is involved in more than one
generalization strategy, then we would use the smallest fre-
quency set from a node with a lower height in one of those
generalization strategies.

The second and third tasks are performed on the gener-
alized frequency set, and involve computing the size of
the equivalence classes for this frequency set. Doing so
requires that we sort the frequency set and then do an
additional pass through it to compute the new equiva-
lence class sizes. Formulas for calculating this appear in
online Appendix D.80

We can compare the performance of our algorithm and
Incognito by summing this score across all nodes for which
we need to compute if it is k-anonymous.

Number of Nodes Compared. Another performance measure
to compare OLA with Incognito is the number of nodes for
which we evaluate information loss. In the case of OLA
these are the k-minimal nodes and in the case of Incognito
these are all the k-anonymous nodes that have been found. The
information loss metrics take time to compute, and therefore
the more nodes for which we need to make this computation
the slower the algorithm will be.

Software Verification
To ensure the correctness of the algorithm implementations
and accuracy in computing the relative information loss

F i g u r e 5. An example of a frequency set for the data-
sets shown in Figure 3. Table (b) is an age generalization
of Table (a).
metrics, one programmer developed the k-anonymity pro-
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grams, and another programmer performed a code review
on that code to detect any errors. It is well established in
software engineering that peer reviews are one of the best
methods for defect detection.81 In addition, the prospect of
having their code being available for scrutiny by their peers
motivates programers to be more careful.82

Additional testing on synthetic datasets and samples from
the real datasets was performed to verify correctness. For
Datafly and Samarati the correct de-identification results for
the test datasets were computed by hand and these were
used to verify their implementations. For Incognito and
OLA we implemented a brute force search that evaluated all
the nodes in the lattice and produced the globally optimal
solution, and we checked that the implementations of the
two algorithms produced the same result.

The measurement of information loss presented in the
results section was performed by a separate program that
compared the original and de-identified datasets. The same
program was used to evaluate the Datafly and Samarati
results. This program was tested by comparing its results to
a manually computed gold standard on synthetic datasets
and samples of real datasets.

For computing the node evaluation complexity, the results
were computed by hand for synthetic datasets and samples
of the real datasets, and the computations from the instru-
mented versions of the algorithms were compared to these
to ensure correctness.

Results
In this section, we discuss the results for the 5% suppression
limit only. The results for the 1% and 10% suppression limits
are provided in online Appendix C.

The information loss results comparing Datafly and Sama-
rati are shown for the 5% suppression limit in Figure 6
(available in online Appendix C at www.jamia.org). The
information loss comparisons indicate that both of these
algorithms often have information loss values greater than
the optimal solution, with Datafly generally having the
higher information loss. For the Prec metric, Samarati is
closer to the optimal, but the differences are much more
pronounced for the DM* and entropy metrics. These obser-
vations hold across different suppression limits as well.

The speed results comparing Datafly and Samarati are
shown in Figure 7 (in online Appendix C). It is clear that
Datafly is much faster than Samarati. In fact, when com-
pared to other data in Figure 9 (in online Appendix C),
Datafly is the fastest k-anonymity algorithm overall. How-
ever, as the above results indicate, this comes at the cost of
higher information loss.

The first comparison of computations performed between
OLA and Incognito is in terms of the number of nodes for
which we need to evaluate k-anonymity. The results are
shown in panel (a) of Figure 8. OLA almost always evaluates
fewer nodes than Incognito across all the datasets.

The node complexity results are shown in panel (b) of Figure
8. Incognito is better for the CUP dataset across all values of
k. The amount of computation is more or less the same for
the Pharm and Niday datasets, and OLA performs better for

the remaining three datasets. In the case of the Adult dataset
and FARS, the difference in performance is quite significant
in favor of OLA.

The third performance comparison is shown in panel (c) of
Figure 8, which plots the relative number of nodes for which
information loss needs to be computed. The set of nodes that
Incognito produces is quite large and significant resources are
consumed evaluating information loss for all of these to per-
form a comparison and select the node with the lowest infor-
mation loss.

The overall time in seconds comparing OLA and Incognito is
shown in Figure 9 (in online Appendix C). These graphs are

F i g u r e 8. The performance metrics comparing our algo-
rithm to Incognito. The results are for the 5% suppression
limit. Our algorithm is the 100% value on the y-axis, and if
Incognito performs more computations then its value is
above 100%, and if it performs less computation then its
value is below 100%. The panels show: (a) the total number
of nodes for which we need to compute if they are k-
anonymous, (b) the node complexity score given by Equa-
tion 3, and (c) the number of nodes for which information
loss needs to be computed.
dominated by the sum of the computations illustrated in
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panels (b) and (c) of Figure 8. The results make clear that
OLA consistently, and sometimes quite significantly, finds
the optimal solution faster than Incognito. The same results
hold across all values of k and suppression limits we tested.

Discussion
Summary
Obtaining consent from patients can be costly and in practice
introduces bias in clinical research. The de-identification of
datasets at collection or at the earliest opportunity after collec-
tion is one alternative to obtaining consent. In this study, we
presented a new globally optimal algorithm, OLA, that is
suitable for de-identifying health datasets. This new algorithm
satisfies the k-anonymity criterion. We empirically compared
its performance on six datasets to three other k-anonymity
de-identification algorithms: Datafly, Samarati, and Incognito.

Our comparisons showed Datafly and Samarati tended to
have higher information loss than the optimal solution for
three different common metrics: precision, the discernability
metric, and non-uniform entropy. This indicates that there is
a non-trivial information loss advantage to using a k-
anonymity algorithm which produces a globally optimal
result. Comparing the speed of Datafly and Samarati, Dat-
afly was consistently faster, even on quite large datasets.
OLA will have the exact information loss as Incognito
because both find the same globally optimal solution as
defined by the information loss metric in use. OLA’s perfor-
mance is significantly faster than Incognito.

Given the expense and potential inconveniences of collect-
ing health information from patients, it behooves us to
minimize the amount of information loss from de-identifi-
cation. To obtain the result which ensures the minimal
possible information loss, the fastest algorithm was shown
to be OLA.

Applications in Practice
It is possible that OLA will not find a solution. This would
occur if there is no k-anonymous node in the lattice. Under
such circumstances the height of the generalization hierar-
chies would need to be extended to allow for more gener-
alization or the MaxSup value increased and the algorithm
run again. Note that if OLA cannot find a solution then no
other k-anonymity algorithm which uses generalization and
suppression would be able to find a solution either (with the
same suppression limit and for the same generalization
hierarchies on the quasi-identifiers).

In principle, the number of records flagged for suppression
after the application of our algorithm can be as high as the
suppression limit provided by the users of the algorithm
(MaxSup). However, this does not necessarily mean that
these whole records need to be suppressed. A local cell
suppression algorithm can be applied to the flagged records
and it will only suppress specific values of the quasi-
identifiers on the flagged records.83 Such an approach en-
sures that the number of cells suppressed from the set of
flagged records are minimized.

OLA has already been applied to de-identify a pharmacy
dataset being disclosed to a commercial data broker.65 In
this particular case study, the data were being disclosed on
a quarterly basis through an automated de-identification

and upload process.
Users of OLA will not be able to easily select which of the
three information loss metrics to use each time they need to
de-identify a dataset. Therefore, in practice it is recom-
mended that non-uniform entropy is used. The reason is
that, as can be seen from the review in the Methods Section,
it is the one with the least known deficiencies.

There will be many situations where the quasi-identifiers are
not equally important to the data recipient. It would be
desirable to select a k-anonymity solution which generalizes
the most important variables less. Assuming entropy is used
as the information loss metric, weighting of quasi-identifiers
can be achieved using a weighted non-uniform entropy as
indicated in online Appendix D.

A recipient of a dataset may wish to impose constraints on
the generalization that is performed. Some common con-
straints can be accommodated with OLA by limiting the
nodes that are included in the lattice. Two specific examples
are considered below.

A data recipient may want to impose a maximum allowable
generalization. For example, a researcher may say that any
generalization of age above a 5-year interval is unacceptable.
If we take the age generalization hierarchy in Figure 1, then
a1 would be the highest acceptable height. Such a constraint
can be accommodated by creating a lattice where the top
node is �d2, g1, a1� instead of �d2, g1, a4�. This ensures
that the globally optimal solution will never have an age
generalization above 5 years.

Another constraint that is often useful to have is to correlate
the generalizations among multiple quasi-identifiers. For
example, if a dataset has a date of death and an autopsy date
as quasi-identifiers, it would not make sense to generalize
the former to the nearest year, and keep the month and year
for the latter. In such a case an intruder would be able to
infer the month of death quite accurately by knowing the
month of the autopsy. Therefore, the additional level of
generalization on date of death provides no protection.
Consequently we would want to ensure that the generaliza-
tions performed on both of these variables match. This can
be achieved by not having any nodes in the lattice where
these two variables have different levels of generalization.
As another example, consider a longitudinal health insur-
ance claims dataset with a patient’s residence postal code at
the beginning of each year included as a quasi-identifier.
For many patients their postal code will be the same from
one year to the next. Therefore, it would be prudent to
correlate the postal codes for all the years in the dataset to
ensure that postal code is generalized to the same height
across all years.

Limitations
In principle, OLA requires that the information loss
metrics used are monotonic with respect to generalization
strategies in the lattice, whereas Incognito does not im-
pose that requirement. We have shown that three differ-
ent and relatively common information loss metrics that
capture different types of generalization costs are mono-
tonic. However, the case has been made that even if an
information loss metric is non-monotonic, it rarely exhib-
its this non-monotonic behavior in practice.42 To the
extent that this empirical observation can be generalized

broadly, other nonmonotonic metrics, such as basic en-
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tropy or the original discernability metric, may still pro-
duce optimal results with OLA.

Instead of generalization and suppression, other de-identi-
fication approaches could be used, such as the addition of
noise.57,84 It has been argued that while these approaches
may maintain the aggregate properties of the data (such as
the mean), they do not preserve the truthfulness of individ-
ual records.24 Furthermore, the optimal type of disturbance
will depend on the desired analysis that will be done with
the data, which makes it difficult to de-identify datasets for
general use.85 As noted earlier, all variables types can be
represented in terms of a generalization hierarchy, and there
are very limited perturbation techniques for such hierarchies
apart from generalization and suppression.
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