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Abstract. Privacy is a huge concern for cryptocurrencies and blockchains as most of these systems
log everything in the clear. This has resulted in several academic and industrial initiatives to address
privacy. Starting with the UTXO model of Bitcoin, initial works brought confidentiality and anonymity
to payments. Recent works have expanded to support more generalized forms of private computation.
Such solutions tend to be highly involved as they rely on advanced cryptographic primitives and cre-
ative techniques to handle issues related to dealing with private records (e.g. concurrency and double
spending). This situation makes it hard to comprehend the current state-of-the-art, much less build on
top of it.
To address these challenges, we develop a systematization of knowledge for privacy-preserving solutions
in blockchain. To the best of our knowledge, our work is the first of its kind. After motivating design
challenges, we devise two systematization frameworks—the first as a stepping stone to the second—and
use them to study the state-of-the-art. For our first framework, we study the zero-knowledge proof
systems used in surveyed solutions, based on their key features and limitations. Our second is for
blockchain privacy-preserving solutions; we define several dimensions to categorize the surveyed schemes
and, in doing so, identify two major paradigms employed to achieve private computation. We go on
to provide insights to guide solutions’ adoption and development. Finally, we touch upon challenges
related to limited functionality, practicality, and accommodating new developments.

1 Introduction

Following their revolutionary economic impact, cryptocurrencies and blockchain technology continue to build
on an innovative computation model. Researchers and practitioners alike are racing to build new applications
and transform existing systems into fully decentralized ones by utilizing the unique features of blockchain.
While early initiatives focused on payment transfer, more recent smart contract-enabled blockchains allow
individuals to build applications processing highly sensitive data for medical records tracking, trading, and
voting.

However, lack of privacy is a huge concern. Popular systems like Bitcoin and Ethereum do not support
privacy out of the box. All records are logged in the clear on the blockchain, allowing anyone to read their
contents. Moreover, while no real identities are required, several studies have shown how seemingly random-
looking addresses can be linked to their real owners [71,72,55,14]. This is problematic; users do not want their
payment activity to be disclosed, not to mention their more sensitive data such as votes or health-related
information. Lack of privacy also impacts fairness as it makes users susceptible to front-running attacks [33].
That is, a malicious actor monitors others’ transactions and races to issue her own transaction and have it
be confirmed first (e.g. racing to win an auction). At the same time, revealing a coin’s history may result in
“tainted” currency; these are coins that no one wants to own due to some undesired coin history (e.g. being
used in some illegal trade).

All these concerns resulted in several academic and industrial initiatives to bring privacy to blockchains
[58,73,23,19,76,82,27,49,52]. Starting with the simpler UTXO model from Bitcoin, early works aimed to pro-
vide confidential (hiding transfer amount) and anonymous (hiding user’s addresses) payments. Focus shifted
to supporting privacy in the account model of Ethereum, with a desire to build private smart contracts which
would allow for arbitrary computation to be performed on the blockchain while hiding inputs/outputs. Ex-
tending this effort further, interest has emerged in supporting function privacy so that even the computation
itself is hidden.



A common theme to these solutions is their reliance on advanced cryptographic primitives such as ho-
momorphic commitments/encryption [73,23] and various zero knowledge proof systems [64,43,24]. This is
in addition to the need for creative techniques to handle issues arising when dealing with private records,
such as resolving concurrent transactions operating on private account state, dealing with anonymity sets,
tracking private coins to prevent double spending, and addressing efficiency. All these facets make it hard to
comprehend the state-of-the-art, much less build on top of it.

Contributions. To address this challenge, we develop a systematization of knowledge of privacy-preserving
solutions in cryptocurrencies and blockchains, which (to the best of our knowledge) is the first of its kind.
On one hand, such a study makes it easier for newcomers to understand the landscape. On the other hand,
our work paves the way towards more advancements by identifying missing features and open questions.

After motivating design challenges and providing a brief background on the main cryptographic building
blocks used in supporting privacy (Section 2), we devise two systematization frameworks. The first framework
targets zero-knowledge proof (ZKP) systems that current blockchain privacy-preserving solutions adopt,
with a focus on impactful facets—including their flexibility, security, and efficiency (Section 3). The second
framework is for the solutions themselves and covers several dimensions. The main dimension is supported
functionality, which encompasses three categories (Section 4): (1) private payments that focus on hiding
content and participants’ addresses for currency transfer, (2) private computation that allows for arbitrary
(user-specified) computation operating on private inputs and producing private outputs, and (3) function
privacy that hides the computation itself.

To provide more granular insights, we introduce sub-categories for private computation schemes—our
largest category—based on two dimensions: where the private computation is performed and the design
paradigm used to enable the private computation. In doing so, we identify two major lines of work and coin
the following terms to describe the paradigms: homomorphic encryption-based and zero-knowledge proof-
based. We go on to analyze the benefits and tradeoffs of these paradigms, in conjunction with salient features
such as trust assumptions, concurrency, and user’s role in the computation itself.

Throughout our analysis, we provide insights to guide solutions’ adoption and development based on the
privacy goals and system requirements a designer has in mind. Finally, among the gaps that we identify,
we focus on handling multi-user inputs—a shortcoming of existing surveyed work—and discuss two brief
technical proposals. This is in addition to discussion on accommodating new advances related to the trust
assumptions and efficiency of existing solutions.

Scope. The blockchain space encompasses a massive body of work taking on several forms (e.g. peer-reviewed
papers, white papers, technical reports, or even blog posts). Vetting and describing all these works is clearly
infeasible. Thus, we study influential and representative solutions; we focus on peer-reviewed works (where
possible) that have been used in operational projects or have served as the basis for new and creative
design paradigms. This paper is not an attempt to describe in detail how each system or solution works,
nor it is about providing formal definitions of protocols and their security aspects. Instead, its goal is to
describe design paradigms and explore their key features, limitations, and tradeoffs. Moreover, anonymity
is not the main focus; we target confidentiality (hiding inputs/outputs) and function privacy (hiding the
computation itself). We discuss anonymity only for systems that support the other forms of privacy (the
interested reader may consult [8] for a SoK on anonymity in blockchains). Furthermore, we do not focus on
privacy for specific use-case blockchain-based systems like private decentralized exchanges or private voting
applications. Instead, we study solutions that support privacy-preserving payments or arbitrary computation
for a variety of applications. In particular, we study the following schemes:

– Payments: Monero [63] is one of the first private deployed cryptocurrencies, with numerous subsequent
academic works on it. Zerocash [73] is a peer-reviewed paper with a resulting operational project Zcash.
Quisquis [35] is a peer-reviewed work proposing a unique system model (account UTXO hybrid).

– Computation: Hawk [53] is one of the first peer-reviewed works in private blockchain computing. Zether [23]
is a peer-reviewed work supporting confidential transactions on Ethereum; it is the first to build on the
homomorphic encryption-based approach we introduce in Section 4. Zexe [19] is a peer-reviewed work,
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resulting in the operational project Aleo. Zkay [76] is a peer-reviewed work and operational project with
an extensive open-source codebase to support private smart contracts on Ethereum. Kachina [52] is a
peer-reviewed work from IOHK, one of the first theoretical works to formally model private smart con-
tracts. Arbitrum [49] is a peer-reviewed work, with a resulting operational project from Offchain Labs.
Ekiden [27] is a peer-reviewed work, with an operational project from Oasis Labs.

We note that privacy-preserving solutions are generally designed to be modular, meaning that they are
not explicitly tied down to using a specific proof scheme. Hence, in implementing these schemes, some op-
erational projects switched to more efficient building blocks (e.g. zero knowledge proof systems) than what
was originally proposed in their peer-reviewed papers. This is a natural result of technical advancements,
leading to more optimized cryptographic primitives than what was originally available. We describe schemes
based on the peer-reviewed papers to unify the discussion and, when appropriate, mention the changes that
operational projects adopted.

Related Work. There are a few SoKs around privacy for blockchains in the literature [36,13,80,70,48].
Most of these works adopt a more general scope—e.g., discussing topics around blockchain architecture and
types, consensus protocols, privacy use cases, identity management, or access control. They tend to consider
a larger body of work, referencing schemes that do not have operational projects or those that represent
customized privacy solutions for particular applications.

However, all of these works focused on the cryptographic primitives in isolation—treating the primitives
as the solution itself. Their discussion on systems is limited, often with the goal of providing an example
of where a primitive is used. These works do not show how various primitives and techniques are combined
in systems to achieve general private computation. Furthermore, these SoKs do not identify the underlying
design paradigms (along with their challenges and design nuances). Providing an in-depth, focused, and
systematized study is critical for adoption and future systems design. Our work closes this knowledge gap
and addresses the shortcomings of prior works.

2 Background

To facilitate the discussion, we first present an overview of blockchain design, differentiate between the UTXO
and account-based model, and informally examine the notion of privacy in the context of blockchain. Finally,
we review the main cryptographic building blocks used in the surveyed solutions.

2.1 Blockchain Components

A blockchain is an append only log (usually referred to as a distributed ledger), representing the backbone
of any cryptocurrency. This ledger records all transactions in the system, allowing mutually trustless parties
to exchange payments. A blockchain is maintained and extended by miners who compete to win the rights of
mining the next block and, hence, collecting the mining rewards. The current state of a blockchain is agreed
upon through the consensus protocol that these miners run. The stable state of a blockchain includes only
the confirmed blocks—these that go more than k blocks deep into the blockchain. End users (lightweight
clients) can then use the service by broadcasting transactions to the miners and tracking only their own
records, rather than the full blockchain.

In general, cryptocurrencies can be classified into two categories based on the way they use to track
currency ownership. The first of which is the unspent transaction output (UTXO) model, initially proposed
by Bitcoin [62]. About half a decade later, Ethereum went on to pioneer an account-based model [79]. In the
former, miners need to maintain all unspent transactions, with a client’s currency balance computed as the
total value of all unspent transactions destined to her address(es). In the latter, each address has an account
on the blockchain associated with a balance that is updated based on the currency transfer transactions this
account issues or receives.

Furthermore, cryptocurrencies can be classified into two categories based on the functionality they sup-
port. In the first category, only currency transfer operations are supported with limited scripting capability
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to make conditional payments. We refer to this as the Bitcoin-like model. While in the second category, the
end user can deploy arbitrary programs on the blockchain for the miners to execute on demand in the form
of smart contracts. We refer to these as smart contract-enabled cryptocurrencies, where Ethereum was the
first to introduce this model.

Security of a blockchain can be defined in terms of a set of security properties [16,38,65]. Informally, a
ledger L is secure if it satisfies the following [38]:

– Persistence: For any two honest parties P1 and P2, and any two time rounds t1 and t2 such that t1 ≤ t2,
the stable state of L maintained by P1 at t1 is a prefix of the stable state of L maintained by party P2

at time t2 with overwhelming probability.
– Liveness: If a transaction tx is broadcast at time round t, then with overwhelming probability tx will be

recorded on L at time at most t+ u, where u is the liveness parameter.

Persistence covers what is called consistency and future self-consistency in [65]. Liveness includes chain
growth and quality (i.e., a ledger L records only valid transactions and blocks), defined in [65]. [16] also adds
fairness, which states that miners will collect rewards in proportion to the mining power they put in the
system.

2.2 Privacy Domain in Blockchains

Privacy shares the general theme of hiding user data. However, in the context of blockchain, this can take
on several forms. The first type of privacy is input/output privacy (also known as confidentiality), which
allows us to hide the inputs and outputs of an operation or function. Confidential currency transfer can be
viewed as a restricted form of I/O privacy, since it translates to hiding the amount being sent along with
the balances of the sender and recipient addresses. For more general smart contracts, I/O privacy translates
to hiding the inputs and outputs of the functions defined within the code of smart contracts. The second
type of privacy is function privacy, allowing us to hide the computation itself. Function privacy may be of
particular interest for proprietary code or when the code leaks information on the type of processed inputs
(potentially having privacy implications). Finally, user anonymity is a form of privacy since it deals with
hiding the users’ addresses involved in a transaction or a computation. As mentioned earlier, we focus on
the former two types of privacy in our work.

In terms of security notions, beside having a secure blockchain and consensus protocol as defined earlier,
a privacy-preserving cryptocurrency must satisfy additional properties to capture privacy. Informally, these
privacy related properties include [73,23]:

– Ledger indistinguishability: An adversary cannot distinguish between two versions of the ledger that
differ in at least one transaction with non-negligible probability.

– Balance or overdraft safety: Despite supporting confidentiality and/or anonymity, an adversary cannot
spend more currency than he rightfully owns.

The above notion of ledger indistinguishability can be formulated differently to state that a ledger does
not reveal any additional information about private data (or computation) beyond what can be inferred from
public records. Such a definition would allow us to cover private computation with I/O privacy and function
privacy. The notion of balance/overdraft safety will remain the same for these categories, meaning that even
if an adversary requests I/O or function privacy-preserving operations, she will not be able to obtain free
coins in the system.

Why is privacy harder for smart contracts than for payments? First, note that a smart contract
can be any program of the user’s choice. It may involve complex operations (more than just the addition
used in currency transfer) and have application-dependent conditions to be checked for the inputs. In the
account model, unavoidable concurrency issues occur from trying to operate on encrypted balances using
zero-knowledge proofs. Second, smart contracts may operate on inputs from different users, meaning that
these inputs are encrypted with respect to different keys. Allowing such interoperation is non-trivial and
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requires sophisticated cryptographic primitives. Third, efficiency issues from providing privacy (particularly
from the use of ZKPs) are compounded in private computation extensions. Lastly, the flexibility provided by
smart contracts, combined with the additional cryptographic primitives required to support privacy, raises
several questions related to correctness and legitimacy of the deployed code. What if the code has security
vulnerabilities and deviates from the intended functionality? What if there is privacy leakage when public and
private accounts interact with each other? This places a huge burden on the end user to vet such applications
and contracts before using them.

2.3 Cryptographic Building Blocks

Privacy-preserving solutions are centered around a handful of cryptographic primitives. These are (infor-
mally) defined in what follows.

Commitments. A non-interactive commitment scheme is composed of three efficient algorithms: Setup,
Commit, and Open. Setup takes as input a security parameter κ and generates a set of public parameters pp.
Commit takes pp, a message m, and randomness r as inputs, and outputs a commitment c to m. Open takes
pp and c as inputs and produces a decommitment d = (m, r).

A secure commitment scheme must satisfy two properties: hiding, meaning that commitment c does not
reveal any information about m, and binding, meaning that a commitment c cannot be opened to m′ such that
m′ 6= m. Such properties allow for recording private data on the blockchain, hidden in commitments, with
the guarantee that the owner cannot change the original data without being detected. A formal definition of
a commitment scheme and its security can be found in [41].

Some commitment constructions, such as Pedersen commitments [66], support additive homomorphism.
That is, given two commitments c1 = Commit(m1, r1) and c2 = Commit(m2, r2), c3 = c1+c2 is a commitment
to m1 +m2 with randomness r1 + r2. This allows for operating on committed values without opening them.
An additively homomorphic commitment is valuable in private payments as it permits updating a private
(committed) account balance by adding and subtracting (committed) currency amounts.

Homomorphic encryption. A homomorphic encryption (HE) scheme is composed of three efficient algo-
rithms: KeyGen which generates encryption/decryption keys (and any other public parameters based on the
construction), Encrypt which encrypts a message m to produce a ciphertext ct, and Decrypt which decrypts
a ciphertext ct to get the plaintext message m back.

Homomorphic encryption schemes allow for performing computations on ciphertexts such that the output
ciphertext will decrypt to the same plaintext output as if one had operated directly on the underlying plain-
texts. Additively homomorphic encryption schemes only support addition homomorphisms (i.e. operations).
That is, let ct1 be a ciphertext of m1, and ct2 be a ciphertext of m2, then ct1 + ct2 = ct3 is a ciphertext
of m1 + m2. This supports an equivalent purpose as homomorphic commitments—updating an encrypted
account balance by adding and subtracting (encrypted) currency amounts. Some encryption schemes can
only support homomorphic multiplication (i.e. ct4 = ct1 · ct2 is a ciphertext of m1 ·m2). For example, the
ElGamal encryption scheme can be either additively homomorphic or multiplicatively homomorphic, based
on whether m is encrypted in the exponent, but not both.3

Fully homomorphic encryption (FHE) supports both addition and multiplication of ciphertexts. This
allows for performing any computation over encrypted inputs to produce encrypted outputs. All currently
known schemes rely on lattice-based cryptography, thus providing post-quantum security guarantees. The
first FHE scheme was introduced by Gentry [39] and was followed up by a large body of works devising more
optimized constructions [21,34,61,78,40,22,26].

Zero knowledge proofs. A (non-interactive) zero knowledge proof (ZKP) system allows a prover to con-
vince a verifier that it knows a witness ω for some statement x without revealing anything about the witness

3 For simplicity, we represent homomorphic addition and multiplication using ‘+’ and ‘·’. Based on the scheme, the
exact implementation of each operation may vary (e.g. in additively homomorphic ElGamal encryption, ciphertexts
are multiplied with each other to have a ciphertext of m1 + m2).
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beyond what can be implied by x itself. An example could be proving that a given ciphertext encrypts an
integer y that lies in the range [a, b], without revealing the exact value of y.

A ZKP system is composed of three algorithms: Setup, Prove, and Verify. Setup takes as inputs security
parameter κ and specifications of the NP relation (which determines the set of all valid statements x) for
which proofs are to be generated, and outputs a set of public parameters pp. Prove takes as inputs pp, a
statement x, and a witness ω for x and outputs a proof π proving correctness of x (that it satisfies the NP
relation). Lastly, Verify takes pp, statement x, and π and outputs 1 if the proof is valid (0, otherwise).

A secure ZKP system must satisfy several properties including completeness, soundness, and zero-
knowledge. Completeness ensures that any proof that is generated in an honest way will be accepted by
the verifier. Soundness (or proof-of-knowledge) states that if a verifier accepts a proof for a statement x then
the prover knows a witness ω for x. Put differently, this means that a prover cannot convince a verifier of
false statements. Finally, zero knowledge ensures that a proof π for a statement x does not reveal anything
about the witness ω. An additional (efficiency-related) property is succinctness—such that proof size is con-
stant and verification time is linear in the size of the input, regardless of the circuit size representing the
underlying NP relation. A ZKP system that satisfies all four of these properties is denoted as a zk-SNARK
(zero knowledge succinct non-interactive argument of knowledge). Formal definitions of ZKP systems and
zk-SNARKs can be found in [41,15].

ZKPs are heavily utilized in private cryptocurrency and blockchain applications. They allow for proving
that an input satisfies certain conditions, that an operation has been performed correctly, or that the ledger
state has been updated successfully, without revealing anything about the underlying private data.

Multiparty computation. A multiparty computation (MPC) protocol allows a set of mutually-distrusted
parties to evaluate a function over their private inputs without revealing anything about these inputs beyond
what can be inferred from the output. Most MPC protocols in the literature use two approaches: the secret
sharing based approach [12] or garbled circuits [11].

An MPC protocol is secure if it satisfies three properties: correctness, privacy, and fairness. Correctness
ensures that an MPC protocol executing a function f will produce the same output that f would produce if
it were to operate on the inputs in the clear. Privacy ensures that no information about the parties’ inputs is
leaked apart from what the output may reveal. Finally, fairness ensures that either all or none of the parties
learn the output. These properties are often captured using an ideal functionality notion for the intended
computation, along with a simulation-based security proof comparing an ideal execution of the protocol with
a real world one. The interested reader may consult [25] for further details and formal definitions.

MPC protocols are mainly used to distribute trust, thereby replacing a trusted entity with a set of parties
to perform the same functionality in a private way. This has been exploited in blockchain systems; MPC
protocols were used to execute a trusted setup when needed (e.g. producing a common reference string for
non-interactive ZKPs) [20,7]. As we will discuss later, MPC can also be utilized to execute off-chain private
computations over inputs coming from multiple users.

3 A Bird’s Eye View of Zero Knowledge Proof Systems

In providing privacy on blockchain, parties often need to prove that conditions on their hidden inputs have
been satisfied for the appropriate application. In private currency transfer, for example, this might mean
ensuring that the hidden amount being sent is non-negative. Zero-knowledge proofs (ZKPs) provide a crypto-
graphic solution to this problem. The vast majority of blockchain constructions offering privacy rely on ZKPs.
Accordingly, research in this topic has exploded in the past years, with a goal of constructing lightweight
ZKPs for the blockchain setting. Of the 10 works we survey in this paper, only 2 of them do not make use
of ZKPs.4

4 We also do not include Kachina or Monero in this section. Kachina is a theoretical work and does not specify a
particular ZKP system in its instantiation, whereas Monero [63] uses ring signatures.
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Table 1: Comparison of the ZKP systems used in blockchain private-preserving solutions. The starred schemes
use variants of these proof systems (specifically Hawk uses a variant of PHGR13 and Zether uses a variant
of Bulletproofs).
Proof System Used in Universal Transparent Prover Time Verifier

Time
Size

PHGR13 [64] Zerocash X X Quasilinear Linear Constant

PHGR13 + Kosba [54] Hawk* X X Quasilinear Quasilinear Quasilinear

Bulletproofs [24] Quisquis,
Zether*

X X Linear Linear Logarithmic

GM17 [45] Zexe, Zkay X X Quasilinear Linear Constant

Systemization methodology. These proof systems share many features in common as they were chosen
carefully to suit blockchain applications. Thus, we focus on properties that impact practical deployment. In
doing so, we identify three main features—flexibility, security, and efficiency—and discuss how these features
affect deployment of privacy-preserving computing solutions in blockchain.

3.1 Proof Systems Used

We examine three major proof systems ([64], [24], [45]) that are used to support privacy-preserving com-
puting in blockchain (Table 1). All of them use elliptic curves, are (or can be made) non-interactive, and
support proving relations for general arithmetic circuits.

PHGR13 and variants. This proof system [64] is a type of zk-SNARK that relies on pairings to produce
constant-sized proofs. Its security relies on the knowledge of exponent assumption, a non-falsifiable security
assumption [30]. PHGR13 was first used in Zerocash [73] to achieve succinct proofs for private currency
transfer. Such zk-SNARK proof systems can be transformed to support simulation extractability, thus en-
suring that an adversary, who does not know a witness, cannot forge a proof despite seeing an arbitrary
number of valid proofs [43]. Hawk [53] requires this feature and applies Kosba’s transformation ([54]) to
achieve this.

Bulletproofs and variants. Bulletproofs [24] allow for fairly efficient logarithmic-sized range proofs (in
addition to supporting relations for arithmetic circuits). This proof system has the advantage of relying
solely on the discrete logarithm assumption. Bulletproofs were initially used in Quisquis [35] (and eventually
in the operational project for Monero [63]). Zether [23] employs a variant of Bulletproofs called Σ-Bullets
that make Bulletproofs interoperable with Sigma protocols, thereby allowing them to efficiently prove that
algebraically encoded values lie in a particular range.

GM17. This proof system [45] is another type of zk-SNARK that relies on pairings to produce highly
succinct (constant-sized) proofs for arithmetic circuits. Its security relies on an assumption similar to the
knowledge of exponent assumption [32]. Unlike PHGR13, GM17 provides simulation extractability out of
the box. The private computation schemes Zexe [19] and Zkay [76] both use GM17 as the basis of their
constructions.

3.2 Flexibility

In looking at flexibility, we emphasize universality—such that a single reference string be used to prove any
NP statement [81]. However, a challenge arises in providing lightweight ZKPs; the most lightweight construc-
tions in practice are non-universal.
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Universality. Non-universality presents no immediate problems for private currency transfer since the con-
struction is usually limited to supporting a fixed number of known relations. Accordingly, the first proposed
private currency transfer scheme, Zerocash, adopted a non-universal ZKP scheme. Subsequent private pay-
ment works (like Quisquis and Monero) moved to using universal proof systems such as Bulletproofs.

Non-universality limits the flexibility of users to engage in more general purpose private computation
since a new reference string would need to be generated for each new application. This setup process can
be expensive to perform, calling into question the practicality of supporting arbitrary applications via non-
universal ZKPs. In spite of this challenge, three of the four private computing solutions utilizing ZKPs
propose using proof systems with non-universal reference strings for maximum efficiency.

3.3 Security

In looking at security, we focus on trust level. A number of the ZKPs require a “trusted setup,” in which
a trusted party generates some initial parameters used in the proof system. In contrast, ZKPs that do not
require any trusted setup are “transparent.” While it is not the case that a trusted setup implies non-
universality, in the body of work we look at, these two features go hand-in-hand.

Trust. The earliest works in both private currency transfer (Zerocash) and private computing (Hawk) require
a trusted third party to perform the initial setup process. This involves generating the common parameters
of the system, as well as a preprocessing step that provides the verifier with a succinct representation of the
relation being proved. Preprocessing has a direct impact on efficiency as it significantly cuts down on the
proof verification time.

Nonetheless, as the name suggests, trusted setups are a source of security issues if this trusted third party
does not behave honestly (i.e. reveals the randomness used to generate the reference string or any other
secret trapdoors). In particular, this party can use the secret information to potentially break the soundness
of the proof system and, hence, spend currency she does not actually own [73]. A popular mitigation strategy
is to distribute trust by employing multiparty computation so that many parties can participate in the setup
process [20,7]. Thus, as long as at least one party is honest, the whole setup will be secure. If the parties act
honestly, any secret information will be destroyed after finishing the setup as instructed.

One of the first documented MPC ceremonies for generating system parameters was for Zcash [6] (the
operational project implementing Zerocash). The six participants went to great lengths to ensure honest
generation—including air gapping their machines, recording protocol communication via append-only DVDs,
and physically destroying their hardware after the process was complete. More recent MPC ceremonies [1,4]
to generate parameters have involved larger numbers of participants and often volunteers.

Due to these security implications, later works such as Quisquis and Zether moved to using transparent
proof systems (i.e. proof systems without trusted setups) like Bulletproofs. However, new cryptocurrency
designs supporting more general forms of private computation (i.e. Zexe and Zkay) did not adopt this trend.
ZKPs with trusted setups continue to be popular because of their efficiency.

3.4 Efficiency

In using ZKPs in a distributed setting like blockchain, efficiency is arguably the biggest concern. Users (who
serve as the provers) are often lightweight nodes with limited computational power, thus proof generation
cannot be too expensive for them. Although miners (who serve as the verifiers) likely have access to more
powerful machines, they may need to verify all proofs produced in the system, so minimizing verification
time is important to ensure high throughput. Additionally, miners must track the entire blockchain, which
may include all proofs produced in the system. Thus, proof size should be as small as possible, ideally with
size independent of the circuit representing the underlying NP statement.

ZKP efficiency has so many facets that it deserves its own SoK to do the topic proper justice. We provide
a brief overview of the main considerations—time and space overheads—and motivate how these factors
affect private computing in blockchains.
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Theory vs. practice. While the difference between the proof systems may look stark in terms of asymptotic
Big O notation, performance in practice is not quite as clear cut. In practice, Bulletproofs tend to be about
one order of magnitude larger than the PHGR13’s zk-SNARKs [64] when proving statements for confidential
payments. Additionally, it can be difficult to compare concrete performance across papers as the authors take
advantage of different techniques and provide non-standardized benchmarks. For example, authors may use
many cores (Zkay, 12 cores), high RAM (Zexe, 256GB RAM), or manually optimize the arithmetic circuit
representing the NP statement to be proved (Zerocash). Thus, we focus primarily on asymptotic behavior
with the goal of providing an intuition of the cost. It should be noted that this too can be misleading as
various proof systems quote asymptotic behavior with respect to different parameters.

Time. Private operations (whether a transaction or a smart contract function invocation) will be accom-
panied by a proof, generated upon issuing this operation and verified upon accepting/executing it in the
system. Initial schemes, like Zerocash, used zk-SNARKs with quasi-linear proof generation time as these
tended to behave like a constant function for most statements the user might need to prove [73]. Later
constructions employed proof systems with both linear and quasi-linear proving times. In terms of proof
verification, almost all the proof systems we look at offer linear verification time.

A potential optimization for verification is batching (supported in Bulletproofs [24]) so that verifying
n proofs together is cheaper than verifying them individually. It relies on the observation that verification
is essentially many multi-exponentiations that can be efficiently combined together. With this batching
technique, verification time grows logarithmically initially and then linearly.

Another consideration is the time needed to execute the ZKP setup process, especially for non-universal
proofs. This is not particularly important for systems that only support private payments as these systems
consist of a set of fixed statements to be proved (so setup will be performed only once when the system is
launched). General private computing schemes, on the other hand, could be more sensitive to such factors
since a new setup may be needed whenever a new application is deployed. Setup time is non-trivial and often
takes on the order of minutes; setup time for the zk-SNARK in Zexe supporting privacy on two inputs takes
over 1.5 minutes (using a server), whereas setup for the zk-SNARK in Zerocash takes over 4 minutes (using
a modest machine) [19,?]. Compounding the problem further, these non-universal proofs also use trusted
setup; recall that, in deployment, a trusted setup is often executed as an MPC ceremony. Repeating this
MPC process many times over (when users want to prove new statements for private applications) will be
costly and require a non-trivial amount of coordination/cooperation.

Space. Miners must store the full blockchain history; unfortunately, a ZKP can often be the largest con-
tributor to a transaction’s size. Using constant-sized proofs can help manage the chain’s growth. This ob-
servation was realized early on in Zerocash, which pioneered the use of zk-SNARKs with constant-sized
proofs. Subsequent works attempting to extend the Zerocash protocol gravitated towards proof systems with
constant-sized proofs as well. Yet, these constant-sized proofs come at a cost. The keys needed to produce the
succinct proofs can be very large (i.e. many orders of magnitude larger than the individual proofs themselves
in practice). As an example, we look at Zerocash; for the POUR relation representing the NP statement of
the proof needed for a basic private transaction, the proof size is 288 bytes whereas the necessary proving
key is 896 MiB [73].

Universal and transparent ZKPs used in private computing solutions (e.g. Bulletproofs and Sigma-Bullets)
produce logarithmic-sized proofs [24]. While these proofs tend to be about one to two orders of magnitude
larger in practice than PHGR13 and GM17’s zk-SNARKs, they have the advantage of not requiring a proving
key (only a small public reference string).

4 The Landscape: Existing Privacy-Preserving Solutions

In this section, we review the solutions developed in the past decade to bring privacy to blockchain and
cryptocurrencies. We begin by describing our systematization of knowledge framework, followed by a study of
these solutions. This study focuses on important features such as work model, design paradigm, security, and
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Fig. 1: Timeline and main categories of blockchain privacy-preserving solutions.

efficiency. We also examine how to handle several technical challenges (e.g. double spending and concurrency)
that become non-trivial when dealing with private blockchain records. Finally, we conclude with insights and
takeaways for the adoption of current design paradigms in emerging blockchain privacy solutions.

4.1 Systematization Framework

We develop a systematization of knowledge framework to fit surveyed solutions into relevant categories based
on distinguishing features. The timeline, shown in Figure 1, traces the evolution of these solutions with re-
spect to the supported functionality dimension, which we use to facilitate discussion in this section. This
dimension involves three categories as follows.

Private payments. The earliest category came as a response to Bitcoin’s lack of privacy. It focuses on
providing confidentiality and sender/recipient anonymity. We review three schemes [73,35,63]. We go on to
observe that the design paradigms underlying this category serve as precursors to those we identify in private
computation schemes.

Private computation. Private payments are inherently restricted in their functionality; they only support
transferring currency from one party to another based on a limited set of conditions encoded in simple
system-prescribed scripts. Addressing these limitations is the motivation for the schemes under this cate-
gory. We identify two major design paradigms taken by schemes to support private computation. The first
is on-chain private computation (via what we call the homomorphic encryption(HE)-based approach), where
users instruct the miners to execute arbitrary computations over private inputs and produce private outputs.
The second is off-chain via what we call the ZKP-based approach, where the work is offloaded to the user
who implements the computation locally and produces ZKPs that miners must verify before accepting the
output and updating the blockchain state. Other constructions under the off-chain category do not follow
the ZKP-based approach; instead, they delegate the computation to trusted hardware or managers and trust
these entities to preserve the privacy of users’ data. The private computation category encompasses seven
schemes [23,19,76,49,27,52,53].

Function privacy. The final category extends the previous two to support a more ambitious goal—hiding
the computation itself along with hiding inputs/outputs. This allows for protecting proprietary code or pre-
venting information leaks that may result from knowing the computation (e.g. inferring the data type of
inputs/outputs to be medical records or trading information). Function privacy can also be useful to hide
the exchange of user-defined assets since leaking the function may reveal the token type. To the best of our
knowledge, there are only two schemes that belong to this category [19,52]; both of them follow the off-chain
ZKP-based approach mentioned above.

Additional dimensions. We further classify solutions based on other dimensions, as shown in Table 2,
such as work model (UTXO vs. account model), design paradigm, where a private computation (if any)
is performed (off-chain vs. on-chain), if anonymity is supported, and whether a scheme relies on any trust
assumptions to achieve privacy. For the latter, and as the table shows, many of the surveyed solutions inherit
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Table 2: Features-based categorization of blockchain privacy-preserving solutions.

Scheme Work Model Design Paradigm On/Off-chain
computation

Anonymous Trust Assumptions

Zerocash [73] UTXO Precursor to ZKP-based N/A Yes Trusted setup

Monero [63] UTXO Precursor to HE-based N/A Yes None

Quisquis [35] Hybrid Precursor to HE-based N/A Yes None

Zether [23] Account HE-based On-chain Yes None

Zexe [19] UTXO ZKP-based Off-chain Yes Trusted setup

Zkay [76] Account ZKP-based Off-chain No Trusted setup

Hawk [53] UTXO ZKP-based+Delegation Off-chain No (only sender
anonymity)

Semi-trusted manager
and trusted setup

Kachina [52] Account ZKP-based Off-chain Yes Depends on ZKP used

Ekiden [27] Account Delegation Off-chain No Trusted hardware

Arbitrum [49] Account Delegation Off-chain No Trusted manager

the trust assumptions of the ZKP schemes they employ. Those which follow the delegation paradigm place
trust in third parties (i.e. trusted hardware or managers).

We also look at the design overhead introduced from supporting privacy in the blockchain setting and
how this varies for the surveyed schemes, as depicted in Table 3. We consider the need for an interactive
setup to deploy new applications, concurrency issues from private operations, whether the user is tasked
with performing the computation herself offline, and whether a scheme is compatible with the main two
systems that pioneered blockchain payments and computation—Bitcoin and Ethereum (where “no” indicates
a scheme will be a new standalone system if deployed). All of these aspects will be further clarified as we
dive into the section.

4.2 Private Payments

As the first successful cryptocurrency, Bitcoin served as the starting point (or base system) for private
payment solutions. This translates into hiding transaction amounts and issuer/recipient addresses to provide
confidentiality, anonymity, and transaction unlinkability. We study three schemes in the private payments
category: Zerocash [73], Monero [63], and Quisquis [35]. Under the these schemes, a user roughly does the
following: hides a transaction value inside a commitment, provides ZKPs showing that the transaction issuer
indeed owns the hidden coins she wants to spend and that she cannot spend more than the input value
(besides meeting other system specific conditions), and, lastly, uses anonymity sets to disguise the issuer and
recipient’s addresses.

As one may expect, having a fully functional private cryptocurrency is not straightforward. It requires
handling several challenges and devising new techniques to process a ledger with private records instead
of only public ones. In what follows, we examine such issues (e.g. handling double spending, output range
checking, and storage/memory considerations) while showing how they are handled in these schemes. It
should be noted that most of these issues and techniques are common to the private computation category
as well, so we only discuss them in detail here.

Work model. Zerocash and Monero are based on Bitcoin, thus inheriting its UTXO-based model. Quisquis
combines UTXOs with a notion of accounts, resulting in a hybrid model—that is, each user will have an
account but a transaction will contain UTXO inputs rather than accounts. This is made possible thanks to
updatable public keys [35], a primitive that allows for having multiple distinct public keys tied to the same
private key. All these keys are derived from the original public key generated when creating a specific ac-
count. Thus, a user can spend all UTXOs (defined using the updated keys) that belong to her account using
the same private key. Quisquis’ novel approach makes handling double spending and breaking transaction
linkability simpler as we will see shortly.
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Table 3: Design overhead of blockchain privacy-preserving solutions.

Scheme Per Application Inter-
active Setup?

Concurrency
Issues?

User performs the
computation?

Compatible
with Bitcoin or
Ethereum?

Zerocash [73] N/A No N/A No

Monero [63] N/A No N/A No

Quisquis [35] N/A Yes N/A No

Zether [23] No Yes No Ethereum (but no
anonymity)

Zexe [19] Yes—new ZKP trusted
setup

No Yes No

Zkay [76] Yes—new ZKP trusted
setup

Yes Yes Ethereum

Hawk [53] Yes—new ZKP trusted
setup

No No No

Kachina [52] Depends on ZKP used Yes Yes No

Ekiden [27] No Yes No No

Arbitrum [49] Yes—new VM + managers No No Potentially Ethereum
(as a secondary chain)

Confidentiality. Commitments are used to hide (and bind) private data. Additive homomorphisms may
be required if a scheme needs to perform a computation over these commitments. For example, Quisquis
adopts an account notion and needs additive homomorphisms to update account balances based on private
currency transfers. Also, transactions in Monero and Quisquis must show that the sum of the input coins
equals the sum of the output coins, so that no one can spend more coins than what she owns. This can be
done without disclosing any of the I/O values by operating on the commitments themselves. Zerocash does
not need additive homomorphisms since checking the prior condition is part of the NP statement of the ZKP
system it uses instead (i.e. it is part of the arithmetic circuit that the proof must satisfy).5

Handling double spending. Another challenge is preventing a party from spending a hidden coin multiple
times. In Bitcoin (and other public cryptocurrencies), this is trivial since all transactions are logged in the
clear on the blockchain. Thus, anyone can check if some UTXO has already been spent by checking the
ledger. In private cryptocurrencies, additional machinery is required.

The core idea employed by private cryptocurrencies is to tie each unspent coin with a unique value (or
capability) such that, when a coin is spent, this value is revealed (or this capability is disabled). For example,
Zerocash assigns a unique sequence number to each coin that is published publicly on the blockchain when the
coin is spent. Hence, a new transaction that produces a sequence number(s) that has already been revealed
indicates a double spending attempt and will be rejected. In Quisquis, the unique value is the public key
itself; since a transaction updates all input public keys, any key will appear only once on the input side of
any transaction. Thus, the reuse of the same input key indicates double spending. Monero, on the other
hand, adopts the unique approach of one time signatures. The key that appears in a UTXO can be used only
once to produce a valid ring signature to spend that UTXO. This is due to recording an image (salted hash)
of the public key on the blockchain when the UTXO is spent. Therefore, any transaction with a signature
tied to an already published image will be rejected since it will be recognized as double spending.

Both techniques—whether unique value or capability based—require searching publicly published data
on the blockchain to prevent double spending, similar to how double spending in prevented for public
cryptocurrencies.

5 Zcash, the company implementing Zerocash, switched to using additive homomorphisms as part of the Sapling
upgrade as of 2018 [46].
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Output range checking 6 Operating on hidden (committed) values introduces another challenge; a mali-
cious transaction issuer can mint free coins. She can create an output to herself with a very small negative
value that will be translated into a very large positive value when applying finite field modular operations.
To prevent this attack, a transaction issuer must prove that all currency values in a transaction’s outputs are
positive and within the range allowed in the system. Range checking can be part of the same NP statement
of the ZKP (as in Zerocash) or proved separately using range proofs (as in Quisquis). In contrast, Monero
uses ring signatures [63] to handle this task, where values are represented in binary expanded format and a
ring signature cannot be produced if the coefficients are not within the allowed range.

Anonymity and transaction linkability Anonymity is achieved via anonymity sets. Any transaction will
be tied to a set of private UTXOs (or coins) such that a spent coin may be any coin within this set. Hence, a
transaction issuer needs to prove that she owns one (or more) of the hidden coins in the set without revealing
which coin it is. The larger the anonymity set, the better—as the probability of guessing the actual input
coin (and, thus, the owner’s address) will become smaller.

Zerocash employs this exact approach, with the proof of ownership as part of the same NP statement
of the underlying zk-SNARK proof. Monero instead uses ring signatures; the anonymity set is a public key
matrix that is used in the ring signature a party generates when signing a newly issued transaction. This
signature proves that the signer is a member of the group (i.e. she knows the secret key of one of the public
keys in the key matrix) without specifying which member.

Quisquis, on the other hand, combines anonymity sets with updatable keys to support anonymity. All
input public keys (the sender, recipient, and anonymity set) will be updated; the balances of the anonymity
set stay as they are, while the sender’s balance is decremented and recipient’s balance is incremented based
on the transferred currency amount. Any public key will be used at most twice in the network—once, when
it is generated on the output side and, finally, when it is spent on the input side of a transaction. Since the
updated keys look like freshly generated ones, Quisquis protects against transaction linkability.

Zerocash provides a higher level of anonymity than Monero and Quisquis since its anonymity set includes
all private coins in the system. Newly added private coins automatically become part of this set (called a
shielded pool). Spent coins cannot be removed since they cannot be identified (otherwise anonymity would
be compromised). When a sender wants to spend her coins, she provides a proof that she owns coins in the
shielded pool without specifying which coins. Hence, this sender can be any private coin owner in the set.
Although Monero and Quisquis can support a large anonymity set (covering all private coins in the system),
it would greatly impact efficiency since more operations would need to be performed for each additional
member in the set (producing a signed commitment in Monero and a key update in Quisquis). In contrast,
for Zerocash, the cost of the ZKP does not rely on the size of the anonymity set. Nonetheless, empirical
studies reveal weaknesses in these schemes when it comes to anonymity. The reuse of public keys in Monero’s
ring signatures allow for breaking its anonymity [59]. Additionally, the anonymity set of a deployed version
of Zcash (the operational project built upon Zerocash) can be shrunk considerably using heuristics based on
identifiable usage patterns [50].

Plausible deniability Plausible deniability allows a party to deny having participated in a private trans-
action. Both Monero and Quisquis support this feature since a transaction issuer can pick any public key in
the system to be part of the anonymity set without the consent of the key owner [35]. Zerocash does not
support this property, since the anonymity set includes all private coins in the system. Thus, in Zerocash, a
user agrees to be part of the anonymity set as soon as she owns a private coin.

Space/permanent memory A distinguishing feature of the schemes discussed in this section is the size of
the UTXO set that miners maintain in the system. Both Zerocash and Monero have a growing list of UTXOs
(since a UTXO is not identified when it is spent to preserve anonymity), preventing miners from storing a

6 Input value checking, i.e., total input value equals total output value (which is not range checking), was discussed
under confidentiality.
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concise version for the blockchain. Although Zerocash computes a Merkle tree over this list, which helps to
reduce the cost of generating a ZKP, all UTXOs must still be kept. Quisquis’s use of updatable keys solves
this problem. Any updated public key with a zero balance will have a proof indicating such, so that other
parties will remove it from the UTXO pool in the system; this advantage is one of the main motivations
behind developing Quisquis.

Discussion The updatable key primitive allows for the hybrid UTXO-account model of Quisquis which
offers additional advantages. These include simplifying how to handle double spending and private key
bookkeeping for lightweight clients (since any account is managed using a single secret key). However, in
contrast to a pure account model, a client’s wallet must track all UTXOs tied to an account (including all
their updated public keys) rather than the account state only.

Unfortunately, account operation concurrency is an issue. By this, we mean that updating account states
impacts the validity of pending transactions. A user’s pending transaction may be rejected if her public key
or any of the public keys in her anonymity set were just used in another user’s anonymity set.

Another point to highlight is the ZKP NP statement a scheme relies on to ensure validity of private
transactions. Zerocash packs all conditions into a single NP statement (one representative arithmetic circuit).
Quisquis and Monero use separate techniques to ensure that the conditions are satisfied. The latter approach
may allow for more performance optimizations, especially when lightweight customized techniques are used.
For example, the use of additively homomorphic commitments allows for checking that currency is preserved
between inputs and outputs in a much cheaper way than using a ZKP. At the same time, having a single
constant-sized ZKP with short verification time may compensate for the performance gains that customized
approaches may offer.

4.3 Private Computation

Building on ideas from private currency transfer, private computation schemes sought to provide I/O privacy
for arbitrary computations on blockchain. Example applications of where I/O privacy is valuable include auc-
tions, voting, user-defined assets, and decentralized exchanges. As mentioned previously, private computation
schemes fall into two main sub-categories we identify based on the underlying design paradigm they follow.
The on-chain category (marked as C1 below) follows what we term the HE-based approach, extending ideas
from Quisquis and Monero to support more complex private computations using homomorphic operations
performed on-chain. The off-chain category (marked as C2 below) relies on two different approaches. The
first we term ZKP-based, building on ideas from Zerocash, in which the user must produce a ZKP to prove
she performed the off-chain computation correctly—without the need for homomorphic operations. The sec-
ond utilizes delegation via trusted managers/hardware to facilitate the off-chain computation (without any
ZKPs). Any of the three approaches can be used regardless of the system model (i.e. account vs. UTXO).
However, the chosen model has important security implications we go on to consider.

(C1) On-chain: HE-based approach The goal of this category is to support arbitrary computation with
I/O privacy on-chain. All of the schemes (that we are aware of) under this category employ the HE-based
approach in the account-based model.

At a high level, and as depicted in Figure 2, the HE-based paradigm works as follows. The user provides
encrypted inputs for the desired computation, along with a ZKP proving that necessary (application-specific)
conditions have been satisfied on her inputs. These encrypted inputs and the ZKP are posted on-chain. Miners
verify the ZKP and then perform the requested computation directly on the encrypted inputs. The types
of computation supported over ciphertexts are determined by the homomorphic properties of the chosen
encryption scheme. If an additively homomorphic encryption scheme is used, then private computation is
restricted to addition only (i.e. users can only request additive computations). To support I/O privacy for
arbitrary computation, an encryption scheme that is both additively and multiplicatively homomorphic (i.e.
FHE) is required.
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Log everything

Fig. 2: HE-based paradigm flow diagram.

Zether [23] was the first construction to employ the HE-based approach, encrypting a user’s account
balance and updating it via homomorphic addition. While the primary goal of Zether is to support confi-
dential payments atop Ethereum via a new token, Zether can also support a restricted class of private smart
contracts. As ElGamal encryption is used, Zether can only support I/O privacy for additive computations.7

Nevertheless, addition suffices for the few applications Zether considers—hiding a bid on a fixed number of
items (sealed-bid auctions) or hiding a vote (confidential voting by stake size).

smartFHE [75] takes this further and uses an FHE scheme to enable building private smart contracts with
arbitrary computations on users’ encrypted inputs. In particular, it employs the BGV scheme [21], in con-
junction with Bulletproofs [24] and a proof system suitable for proving lattice-based relations [69]. Building
on ideas from Ethereum and Zether, smartFHE permits arbitrary public and private smart contracts.8

(C2.1) Off-chain: ZKP-based approach As shown in Figure 3, this paradigm asks the user to perform
the computation offline on her plaintext inputs to get plaintext outputs. The user then encrypts both the
inputs and outputs and produces a ZKP proving that this offline computation, the ledger state update (if
any), were done correctly. The encrypted inputs, encrypted outputs, and ZKP are posted on chain. The
miners’ role here is to simply check the ZKP and then update the blockchain state accordingly. The schemes
under this category include Zexe [19], Zkay [76], and Kachina [52].

Seeking to extend the limited scripting capability of Zerocash, Zexe adopts the ZKP-based approach to
allow for flexible conditional payments in the UTXO model. Zexe generalizes the idea of coins as records
with some data payload (similar to coins with scripts attached to them). Each record has a birth and death
predicate to control spending. To spend a coin, a user must show (via a ZKP) that the old death predicate and
the new birth predicate have been simultaneously satisfied. In other words, the ZKP attests to the validity
of the conditional computation performed off-chain and allows for spending the private coins. Unfortunately,
it is unclear how to support loops based on private control conditions using their system.

Zkay takes the ZKP-based approach further by applying it in the context of smart contracts (i.e. account
model). They observe that writing private smart contracts is an error prone process that can be difficult for
developers. For this reason, they propose a language to enable developers to indicate which data is private
and to which account it belongs. They also build a compiler to transform contracts written in this language
into ones that can be deployed atop Ethereum (while incorporating ZKPs as appropriate for computations
over private data). The compiler enforces several conditions needed to make compilation feasible, such as
operating on private inputs belonging to only a single user, preventing loops with private control conditions,
or requiring certain inputs to be public to allow building the underlying ZKP circuit.

7 Recall that ElGamal can support multiplicative homomorphisms or additive homomorphisms, but not both. The
latter is essential for private currency transfer so the system can update hidden account balances. Thus, it is unclear
if multiplicative homomorphisms alone can be helpful.

8 We do not consider this work further since it is not peer-reviewed as of this time. However, it represents an
interesting example of the evolution of private computation on blockchain.
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Fig. 3: ZKP-based paradigm flow diagram.

Unfortunately, the ZKP-based approach can also be very computationally intensive for the user. Pro-
ducing the needed ZKP can easily take the user over a minute, even on a powerful machine [19,76,53]. One
potential solution to this problem is to delegate proof generation to some semi-trusted third party. Hawk
adopts this modified ZKP-based approach. Rather than asking the user to perform the computation and
produce the appropriate ZKP himself, Hawk instead delegates this work to a semi-trusted manager. The
manager is trusted with maintaining the privacy of the users’ inputs, but not trusted for correct execution
of the computation. By delegating proof generation to a semi-trusted manager, the user loses some privacy
by sharing her data with some third party. Lastly, it should be noted that Hawk focuses on extending the
Zerocash protocol and thus uses the UTXO model.

Kachina [52] lays down a theoretical foundation for privacy preserving smart contracts by presenting
an ideal functionality-based definition. They realize this functionality using the ZKP-based approach. In
particular, a contract creator will divide the contract state into two parts: a public on-chain state and a
(local) private off-chain state maintained by the user. Kachina introduces the concept of state oracles (i.e.,
a way to query the ledger for particular state information) to reduce proof generation costs by permitting
users to involve only the relevant parts of the public ledger state when generating the necessary ZKP proofs
for off-chain computations.

Concurrency While the account model may seem the most natural way to support private smart contracts,
it poses a unique concurrency challenge that the UTXO-model does not suffer from. Each user maintains an
account with an associated private (encrypted) balance. As part of a confidential transaction, the sender (Al-
ice) will need to produce a ZKP with regards to her current state, which includes her private balance. If Bob
sends Alice currency after her transaction has been submitted but before being confirmed, her transaction
will end up being rejected as the ZKP is no longer valid (since the state has changed). This is particularly
problematic when there are fees associated with transactions, as in Ethereum.9

To solve this problem, Zether uses epochs (an epoch spans some fixed number of blocks). Transactions
are processed in epochs, with funds rolled over at the end of an epoch to prevent transactions from being
rejected due to state changes. Users must submit confidential transactions at the start of an epoch to ensure
they are processed in the same epoch. While this approach suffices for handling confidential transactions,
it’s unclear how (or if) this rollover process could handle concurrency conflicts for private smart contracts
spanning multiple epochs.

Handling concurrency in Kachina is more complicated; it encompasses more than account balances since
their scheme involves computations that may change the ledger state of a smart contract. They introduce
a function to specify dependencies between transactions. Dependencies could be an application-dependent;

9 Transactions that do not pass all validity checks at the network protocol level do not incur any fees; they are
rejected since the beginning. However, transaction validation at the smart contract level will incur fees even if
rejected; the validity checks are part of the computation a miner is executing for that contract, e.g. Zether’s ZKPs
are verified as part of Zether’s contract deployed on top of Ethereum.
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hence, each contract will define its own function (as part of its public state). It is the user’s responsibility to
produce a sequence of transactions that do not conflict.

Unfortunately, Zkay does not discuss how to resolve concurrency conflicts. This is likely due to the fact
that it focuses on automating the ZKP-based approach for smart contracts by providing a language and a
compiler.

Anonymity and techniques Private computation schemes employ two techniques to support anonymity—
ring signatures and private anonymous channels. We briefly look at how Zether and Zexe support anonymity
in their works. Zether follows a similar approach to Monero, combining ring signatures with range proofs
to hide the sender’s account address. Unfortunately, users can only initiate one anonymous transaction per
epoch to prevent double-spending attacks. Zexe, on the other hand, assumes a model in which each user has
a private anonymous channel [47] to every other user. However, no discussion around implementing these
channels is provided to assess feasibility.

The cost of privacy on Ethereum Both Zether and Zkay seek to support privacy on Ethereum. Regardless
of the approach taken, working on Ethereum presents its own unique set of challenges. Certain operations
in Ethereum are offered at a reduced cost via precompiles. As privacy solutions are heavy on cryptographic
operations, many of these operations should ideally be supported as precompiles to reduce the overall cost.
Nonetheless, introducing new precompiles requires the community consent as these are considered core
changes to the Ethereum network protocol. Unfortunately, many of the necessary cryptographic operations
used by Zether are not currently offered as precompiles; performing a confidential transaction on Ethereum
using Zether costs over 7.1 million gas, with the majority of the cost coming from elliptic curve operations.
At the time of Zether’s proposal, a confidential transaction cost the sender around $1.5 USD [23]. With
more recent gas prices,10 the same transaction now costs over $1000 USD. Zkay fares a bit better; they
push computation offline and are poised to take better advantage of precompiles with their pairing-based zk-
SNARKs. Their quoted cost depends on the particular contract being implemented (e.g. medical statistics,
reviews) along with the proposed transformation. This makes it hard to directly compare with Zether’s
confidential transaction cost. However, the cost tends to range around 106 gas to obtain a transformed
private contract, with verification costing roughly the same amount [76]. At the time of Zkay’s proposal, this
worked out to around $0.50 USD [76]; this same transaction now costs over $165 USD.

Given the high gas costs and the rapidly fluctuating cost of ETH, supporting privacy on Ethereum may
not make financial sense until cryptographic operations can be provided at a significantly reduced cost.

Discussion Advantages depend on the role played in the system (user vs. miner). For users, the HE-based
approach reduces their overall computational burden by pushing execution of the private computation to
the miners. Consequently, this approach can be expensive for the miners as it requires them to perform
the computation (in addition to checking the ZKP). Thus, the HE scheme must be chosen carefully with
performance in mind so as to reduce the miners’ time spent executing the homomorphic computation.

Extending the HE-based approach to support FHE presents additional efficiency challenges. Recent open-
source libraries (such as Microsoft’s SEAL supporting the BFV scheme) boast of fast execution time for
homomorphic operations, with homomorphic multiplication and refreshing taking less than 1 second on a
modest machine [60]. Such results appear promising as they keep the miner’s execution time down. However,
ciphertext size poses a problem for FHE, particularly when working in the blockchain setting where on-chain
information must be minimized. The resulting ciphertext of a single homomorphic multiplication operation
surpasses over 100 kilobytes in size [74]. For reference, confidential transactions tend to range in size from
hundreds of bytes (for Zerocash with highly efficient zk-SNARKs) to a single digit kilobyte (when less efficient
Bulletproofs are used) [73,35,23]. Thus, it’s unclear how feasible it would be to store FHE ciphertexts on
chain.

10 68 gwei/gas, 1 ETH = $2445 USD
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For miners, the ZKP-based approach can reduce their overall computational burden by pushing a majority
of the work client-side and offline. Highly succinct ZKP systems (such as those with constant proof size)
can also be used to manage ledger growth but at the cost of expensive proof generation for the user.
Generating the ZKP for even a simple computation can easily take over a minute for the user on a powerful
machine [19,76,53]. In Zexe, Zkay, and Hawk, proof setup would need to be repeated for new applications
as they use proof systems with non-universal reference strings and trusted setups. Ideally, a universal proof
system should be chosen here to prevent the need for repeating a costly proof setup process (with an MPC
ceremony) for new applications.

(C2.2) Off-chain: Solutions without ZKPs We view users as the data owners who want to run a
private computation on their inputs. In Ekiden, users delegate this computation to a third party with a
trusted execution environment (TEE). Ekiden refers to this collective party as “compute nodes” as they are
required to perform the computation and attest to the correctness of the update using digital signatures; the
secret key used to produce the signature is only known to the trusted hardware. Thus, miners need to (1)
verify the resulting signatures and (2) ensure that the new state update is based on the current blockchain
state. Concurrency is an issue; if two updates with respect to the same “current” state are received, accepting
one will make the other obsolete. Ekiden relies on the blockchain to resolve such conflicts.

Ekiden’s delegation-based approach has the advantage of reducing both the user’s and the miner’s
computational burden by outsourcing the private computation to TEEs. However, their approach requires
putting trust in hardware (Intel SGX, for example) which has suffered from various security attacks over the
years [42,77].

In Arbitrum, smart contracts are implemented as standalone virtual machines (VMs) and managed by
some pre-determined set of managers. These managers are tasked with ensuring that state changes from
the VM are performed correctly and provide a role separate from that of the blockchain miners. Managers
behave optimistically; they accept state changes without repeating the computation on-chain unless there
is dispute. Such disputes are handled by a bisection protocol with a security deposit. Thus, correctness is
guaranteed so long as at least one manager is honest. Unfortunately, these managers are trusted to maintain
the privacy of users’ inputs. Like Ekiden, Arbitrum has the advantage of minimizing miners’ work by only
requiring them to check managers’ signatures when receiving ledger state updates (assuming no disagreement
between managers has occurred). However, it may be non-trivial to implement all smart contracts as VMs.
It is also unclear how managers would be chosen for each VM and how many would be needed to guarantee
that at least one manager is honest.

4.4 Function Privacy

Zexe [19] is the only concrete scheme providing function privacy.11 As explained earlier, coins in Zexe have
birth and death predicates associated with them (essentially scripts) that control how and when coins are
consumed so function privacy translates to hiding the scripts associated with these coins.

While this framework allows a user to hide how her coins were or can be used, it is unclear how to support
interoperation between coins belonging to different users if the scripts associated with them are hidden. Users
must know what conditions need to be satisfied to be able to consume a coin. Presumably, parties would
coordinate and share such information offline with one another. This issue isn’t unique to Zexe but exists
for providing function privacy more generally. In an account-based model, function privacy may translate to
hiding the smart contract’s code. Rational users are unlikely to participate in a smart contract when they do
not even know what operation is being performed on their data; hence, function privacy makes sense only
when the smart contract author is the sole user of the contract (i.e. the only user providing its inputs) or if
some mutually trusted parties determined the computation and inputs to be provided offline.

11 Kachina mentions that their private smart contract protocol can realize the functionality of Zexe, and hence,
support function privacy. For this reason, we only discuss Zexe in this section.

18



4.5 Insights and Takeaways

When to use which approach? Each of the three design paradigms offer various benefits and tradeoffs.
We provide insights for system designers based on their envisioned user, desired system throughput, and
user privacy needs. It should be noted that the delegation-based approach comes at the cost of the user’s
privacy; the user entrusts some third party with maintaining the privacy of her inputs. In this regard, the
HE and ZKP-based approaches are both superior.

For systems targeting lightweight users, we advise taking the HE or delegation-based approach as these
approaches place a lower computational burden on the user. On the other hand, for systems that must
prioritize high throughput, we recommend employing the ZKP-based approach as it places a lower burden
on the system’s miners/validators (without the added latency of pushing computation to a third party as in
the delegation-based approach). For systems that aim to support both lightweight users and high throughput,
delegation may offer a reasonable tradeoff.

If user experience is important and the system designer cannot compromise on user privacy, then we sug-
gest working in the UTXO model. The account model places additional burdens on the user when supporting
private computation—from the user having to manage concurrency conflicts herself, to calling additional al-
gorithms/functions or placing transactions only at certain times. To minimize system fees that users must
pay, we recommend either the ZKP or delegation-based approach. The HE-based approach effectively out-
sources heavy computation to the system miners or validators, often resulting in higher costs for the user
(e.g. as evidenced in the comparison of Zether and Zkay’s costs).

Where are the design paradigms headed in terms of adoption? Regardless of the approach taken,
privacy-preserving solutions will likely move towards becoming standalone systems. Building on Ethereum
is challenging from multiple perspectives—rapidly fluctuating gas costs, lack of precompile support for im-
portant cryptographic operations, and the account model often making privacy challenging to achieve in a
user-friendly way.

Although the HE-based approach is less developed, we expect it to gain more traction in the coming
years with the push to supporting lightweight users in blockchain. However, we do not believe in a winner-
takes-all situation. Each of the three paradigms excel at different use cases and we anticipate that all three
will continue to develop and be used in parallel.

5 Concluding Remarks and the Road Ahead

Privacy is critical for the future of blockchains and their applications. The use of advanced cryptographic
primitives, combined with unique issues that arise when dealing with private records, places a high barrier
for comprehending and building on top of the state-of-the-art. Our work aims to bridge this gap; it provides a
critical study of the design paradigms privacy solutions have followed, along with insights to guide adoption
and future system design.

As an emerging field, blockchain privacy-preserving solutions encounter many challenges and open prob-
lems, technical and non-technical (e.g. regulatory compliance and usability). We conclude by highlighting
potential directions for future technical work such as handling multi-user inputs, improving efficiency, and
eliminating trusted setups.

5.1 Privacy for Multi-user Inputs

Neither the HE-based approach nor the ZKP-based approach discussed in Section 4 support arbitrary com-
putation on encrypted inputs belonging to different users out of the box. In cryptography, there are two main
primitives that can be used to achieve this goal—multiparty computation and multi-key FHE. We consider
how the HE-based approach could be extended to support multi-user input privacy using multi-key FHE.
Similarly, we also look at how the ZKP-based approach could be extended to support this capability via
MPC.
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Extending the HE-based approach via multi-key FHE Multi-key FHE supports homomorphic compu-
tation over encrypted inputs belonging to different users (hence encrypted with respect to different keys) [61].
Any party can perform this homomorphic computation but, to ensure semantic security, the output must be
jointly decrypted using all the corresponding secret keys.

In extending the HE-based approach, we could instead request that the encryption scheme used to
support private computation be a multi-key FHE scheme.12 A user could still perform computations on
her own inputs as she would if using single-key FHE. However, now, she could also request computations
on various combinations of her and others’ encrypted inputs. Each user will still need to prove that some
conditions on her own inputs hold via a ZKP. Miners will check these ZKPs and then perform the requested
computation directly on the encrypted inputs.

Advantages to such an approach include that no coordination is needed for the homomorphic computation
since anyone can perform it. Additionally, recent schemes [61] provide a one-round decryption process.
However, to decrypt, each participating party needs to broadcast her share (a partial decryption of the
computation output) to the others. This opens up a fairness issue; what if one party observes all the partial
decryptions (so that she can decrypt the result) but refuses to share her own partial decryption with the
others? This requires deploying additional techniques to address fairness. Also, as decryption would likely
take place off-chain, to preserve privacy of the output, coordinating this process may be non-trivial. Moreover,
multi-key FHE schemes with one round decryption rely on either trusted setup [61] or garbled circuits [10].
Finally, multi-key FHE is still fairly inefficient and, thus, currently impractical for the blockchain setting.

Extending the ZKP-based approach via MPC In a similar vein, MPC can be used to extend the ZKP-
based approach to allow for multi-user private inputs. Users can perform any MPC protocol offline such that
this protocol will not only produce the output (which can be private or public), but also a ZKP attesting to
the correctness of this output. MPC literature offers a variety of protocols with different trade-offs in terms
of communication complexity, interactivity, and security guarantees.

Nonetheless, this approach increases the load on end users who need to coordinate the computation and
stay online during execution. It also inherits any limitations coming from the underlying MPC protocol such
as the need for additional machinery to address lack of fairness [28] or the honest majority constraint to
preserve security [9,56]. On the positive side, MPC continues to witness huge interest and advances, leading
to the development of more efficient protocols for various settings [51,31].

5.2 Customized Privacy-Preserving Solutions

There is always an ambition to provide general purpose solutions that can fit any application (one size fits
all, so to speak). This is usually viewed as an advantage. However, given the performance constraints of the
advanced cryptographic primitives needed to preserve privacy, one might ask: can we develop use case-specific
cryptographic solutions that would be significantly more efficient than general purpose ones?

Reflecting on other well-developed privacy technologies, we consider MPC. Many general purpose solu-
tions exist; these can perform arbitrary private computation such as in garbled circuits or secret sharing-based
approaches. However, a large body of works developed customized protocols for popular functions such as
private set intersection, e.g. [67,29,68], optimizing for efficiency.

As another example, we look at FHE. All known FHE schemes are lattice-based. Thus, when using the
HE-based approach with an FHE scheme the first thought that comes to mind is to use a lattice-based ZKP
to prove relations of FHE ciphertexts. Unfortunately, state-of-the-art lattice-based proofs [18,17] tend to
be 3 orders of magnitude bigger in size the those based on elliptic curve cryptography. This problem has
motivated efforts to investigate the possibility of using elliptic curve-based ZKPs to prove certain lattice-
based relations. One such effort includes short discrete log proofs [69] which achieves significantly shorter
proof sizes than lattice-based ZKPs. We anticipate further work on customised cryptographic solutions with
respect to privacy-preserving computation.

12 This idea is proposed in smartFHE [75].
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5.3 The Future of ZKPs

Despite huge gains over the last decade, efficiency continues to be top of mind for ZKPs. Researchers are
often forced to use proofs with trusted setups for optimal efficiency. In exchange for small proof sizes and
fast verification, proof generation is often expensive for the user. One solution is to outsource this task to
some worker or manager. As we have briefly mentioned this in Section 4.3 for Hawk, we do not discuss
this in further detail here. However, we note that this idea has continued to persist in recent constructions
[19] and will likely continue to do so unless proof generation can be made significantly cheaper for private
computation schemes (taking the ZKP-based approach).

Trust has long been treated as a black and white issue in the ZKP literature—either a ZKP is transparent
or it requires a trusted setup to generate common parameters. However, new notions of trust have been
proposed, revealing that trust may be viewed on a spectrum. One such notion can be thought of as updateable
trust, a hybrid approach achieved via an updateable reference string [44,57,37]. With an updateable reference
string the setup process can continue indefinitely, allowing anyone to contribute if she does not trust that the
previous parties who generated the parameters were honest. Unlike transparent ZKPs, state-of-the-art ZKPs
with updateable reference strings [57] can achieve constant sized proofs. A number of operational projects
(e.g., Zcash [5], Mina [3], Aztec [2]) are interested in using or upgrading to ZKPs with updateable reference
strings. Such advancements will contribute in changing the landscape to reach a better trade-off between
trust and efficiency.
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