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Abstract. When a database owner needs to disclose her data, stheazamymize her data to pro-
tect the involved individuals’ privacy. However, if the das distributed between two owners, then it
is an open question whether the two owners can joiryronymize the union of their data, such that
the information suppressed in one owner’s data is not reddalthe other owner. In this paper, we
study this problem oflistributedk-anonymizationWe have two major results: First, itis impossible
to design an unconditionally private protocol that impletseinynormal k-anonymization function,
where normak-anonymization functions are a very broad class-ahonymization functions. Sec-
ond, we give an efficent protocol that implements a norkrahonymization function and show that
it is private against polynomial-time adversaries. Ouulsshave many potential applications and
can be extended to three or more parties.
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1. Introduction

Privacy concerns have been increasingly important in ogiego Nowadays, it is easier than ever to
locate the needed information, which gives us great coeweei. But such easiness of finding informa-
tion also implies easiness of violating people’s privacy. abldress privacy concerns, when a database
containing sensitive information (e.g., health inforroajiis made available to public access, we often
eliminate the identifier attribute(s) from the databasewelgr, only eliminating the identifier attribute

is not sufficient for privacy protection, because adveesactan combine the information provided by this
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database with information from other public sources. A gerdmple was given by Sweeney [31], in
which one can find out who has what disease using a public asdadnd voter lists.

Samarati and Sweeney [25] have propokexhonymizationa powerful tool to solve the above prob-
lem. We illustrate the idea df-anonymization using a simple example: Consider a tablediwtains
health information of patients (Table 1), where each rowpatient’s phone number, age, blood test re-
sult, and urine test result. We call the set of attribteeone NumberAge} a quasi-identifier[12, 31],
because adversaries can use these attributes to ident#tiemtpwith a significant probability. In this
paper, we call an attributecquasi-identifier attributef it is in the quasi-identifier. To prevent adversaries
from using quasi-identifiers to violate individuals’ proya Samarati and Sweeney suggest to make the
table k-anonymoug25]. In ak-anonymous table, if a value of the quasi-identifier appehen it must
appear for at least times. Therefore, each involved individual (patient in example) is “hidden”
among at least peers, so that the adversary cannot use an individual's-gleagifier to identify her.

The procedure af-anonymizatiorcan be achieved in various ways; one possibility is that \wkaoe
some entries with (calledsuppressioh In this paper, we focus okranonymization by suppression.

Contact Phone Number Age of Patient | Blood Test Result| Urine Test Result
645-3032 45 Normal Abnormal
645-3138 25 Normal Normal
645-3138 32 Normal Normal
645-3138 26 Abnormal Normal
645-3084 45 Normal Normal

Table 1. A Table of Health Data

There have been quite a few algorithms fesanonymization [29, 25, 31, 30, 26, 23]. Nevertheless,
these algorithms can be directly applied only if the datavsed by a single entity. In some applications,
the data is distributed between two (or even more) ownenseXample, a survey may be carried out by
two medical researchers, each of whom has a group of patibnts each researcher owns a part of the
data obtained in the survey. In such a case, ideally, the ataalvners should jointlg-anonymize their
data to protect the involved individuals’ privacy, suchtttie suppressed information in each owner’s
data is not revealed to the other owner. We call this proldéstributed £-anonymization Note that
distributedk-anonymization is different fromrivacy-enhancing:-anonymizatiorj38], which performs
k-anonymization while the data is collected. (See Sectioor2iétailed discussion of the difference.)
Our objective in this paper is to find out whether distributednonymization is possible, and if possible,
how we can perform distributetanonymization.

1.1. Our Contributions

As we have mentioned, in this paper we study the problem tfilllised k-anonymization. Specifically,
we assume that there is a table of data and two data ownerslileeis horizontally partitioned, i.e., it

is divided into two disjoint subsets of rows and each dataemiias one of the subsets. We ask whether
there exists a protocol th&tanonymizes the table privately. That is, we ask whetheethsea protocol
such that, at the end of the protocl, the two data owners otityeu:-anonymized table, and that each
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data owner learns nothing about the information suppreisstid data of the other owner. We have two
major results:

e Consider thek-anonymization functioimplemented by the protocaol, i.e., the function that maps
each input of the protcol to the corresponding output. Ost firajor result is that, if we require
unconditional privacy the strongest form of privacy as defined in information tigethen no
protocol can implement angormal k-anonymization function. Here norméatanonymization
functions refer to a very broad classieanonymization functions, including tlkeanonymization
functions implemented by many existiiganonymization algorithms.

e Our second major result is that, if we relax our privacy regmient a little and requireri-
vacy against polynomial-time adversarjghen there is a protocol that implements a norial
anonymization function. We give an “ID-based” protocolttdaes not need the two data owners
to have a priori knowledge of each other’s public key; as lagaghe two data owners know each
other’s ID, they can execute this protocoliteanonymize the data privately.

We stress that our results can be extended to more partiesugh in this paper we focus on two-
party distributedc-anonymization only.

We briefly overview related work in Section 2. In Section 3, present technical preliminaries. Our
two major results are detailed in Sections 4 and 5, respgtiWe conclude in Section 6.

2. Related Work

Now we give a very brief overview of related work from varicargas.

k-Anonymization Samarati and Sweeney were the first to sthehnonymization [29, 25, 31, 30, 26].
Meyerson and Williams [23] considerédanonymization by suppression; they showed that minirgizin
the number of suppressed entries is NP-hard and gave apyation algorithms for this problem. Fur-
thermore, Aggarwal et al. [4] showed that the problem is MRileven when we assume ternary-valued
attributes; in addition, they presented algorithms thathmproved approximation ratios. Machanava-
jihala et al. [22] pointed out that-anonymity may not suffice for privacy protection in someasaghey
proposed an enhanced privacy property cafleliversity,

Zhong et al. [38] studiegrivacy-enhancing:-anonymizationwhich also involves distributed com-
puting. However, their scenario is significantly differémm ours: They consider two problem formula-
tions, both involving a large number of customers, each afiwbwns a row of a table; their first problem
formulation is extracting thé-anonymous part of the table, nlbanonymization; in their second prob-
lem formulation,k-anonymization is performed while a miner collects the deden the customers. In
contrast, in this paper we consider two owners of a disteithalatabase; theéyanonymize the data while
they combine their data together. Furthermore, the soiutiahe second problem formulation in [38]
reveals partial information even to a polynomial-time adaey. In contrast, our protocol in Section 5
does not reveal any information to polynomial-time adveesa
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Private Two-Party Computation Chor and Kushilevitz [11] investigated private two-partmputa-
tion of booleanfunctions; they showed that a boolean function has an uritonally private protocol

if and only if it is an xor of two locally computable function¥ushilevitz [20] extended the study to
general functions and showed that a general function has@nditionally private protocol if and only

if its corresponding matrix isecomposablésee [20] for the definition of decomposable matrix). Note
that in our problem, it is non-trivial to see whethek-anonymization function corresponds to a decom-
posable matrix or not. So given the result of [20], it is sijlen whether there are unconditionally private
protocols fork-anonymization.

For privacy against polynomial-time adversaries, gerguapose cryptographic protocols have been
constructed for arbitrary functions, the first of which wasgeg by Yao [37]. (See [16] for a systematic
presentation of general-purpose protocols). Howevergsisnentioned in [16], due to highly expensive
costs in computation and communication, usually thesetaari®ns cannot be applied directly.

ID-based Cryptography In Section 5, we present a protocol private against polyabtithe adver-
saries, which idD-based Here being ID-based means that the involved parties do eed to have

a priori knowledge of each other’s public key. As long as telved parties know each other’s ID,
the protocol can be executed. This gives us a lot of conveaiemd flexibility. Our protocol uses a
specific ID-based encryption scheme developed by Watetsl8bit can be replaced by other ID-based
encryption schemes with similar properties. For more alidtidased cryptography, the readers can refer
to [27, 9, 8].

Other Related Work In statistical databases, there have been a good numbesulfsren protecting
individual privacy while allowing data sharing [2, 28]. Theoposed methods include query restriction
(e.g., [19, 10]) and data perturbation (e.g., [24, 32, 7., AJs0 in this context, Dinur and Nissim [13]
studied the tradeoff between privacy and utility.

In privacy-preserving data mining, the main technical igmge is also how to protect sensitive data
while maintaining data utility. Some results in this area ba found in [6, 5, 15, 14, 18, 21, 33, 34, 17, 3].

3. Technical Preliminaries

Consider a table withn quasi-identifier attributes ana’ other attributes. Without loss of generality,
we assume thaiy, ..., a,, are the quasi-identifier attributes and thaf,1, ..., a1, are the other
attributes. We say the table isanonymous if each value of{,.. ., a,,) either does not appear in the
table, or appears in the table for at leadimes.

Suppose that there are two involved parties: Alice and Bble.t@ble is partitioned into two (disjoint)
sets of rows: Alice had/4 rows, while Bob hagVg rows. We denote Alice’s part of the table W) and
Bob’s part byI'(®). Theith row of 74 (resp. T®)) is denoted b)TZ.(A) (resp.,Ti(B )y and thejth entry of
this row is denoted bﬁ(f) (resp.ﬂ“i(f)). LetXC() be a function that magsV4+Ng) x (m+m') tables to
(NoA+Np)x (m+m') tables. We éaﬁC() is ak-anonymization functioif for all (N4+ Np) X (m+m/)
tableT, K(T') is k-anonymous.

We assume that there is a private channel between Alice abhdHoexchanging messages through
this channel, Alice and Bob attempt to jointtyanonymize the table. We say a protocol implements a
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k-anonymization functiorkC() if for all 7Y, T(B), Alice and Bob outputC(7), T(B)) at the end of
the protocol.

Now we rigorously define our privacy requirement by adaptimg standard definition of privacy in
thesemi-honest modef cryptographic protocols to our setting. In the semi-lstmeodel, each involved
party is assumed to follow the protocol but may attempt tivdezxtra information to violate privacy of
the other party. This model has been extensively studiefdaé widely applied to privacy problems
with large-size data [21, 17, 36]. Although the semi-homestlel is a strong restriction on participants’
behavior, there are at least two reasons for studying owlgmoin this model. First, deviating from
the protocol requires a considerable amount of effort (fckithe computer program) and such effort
is often illegal. Second, it has been shown that any protpdeate in the semi-honest model can be
“translated” to one secure in the fully malicious model, vehthe participants may deviate arbitrarily
from the protocol [16].

Intuitively, our privacy requirement states that the viefathtee protocol seen by each party can be
simulated by an algorithm that has no knowledge of the sggprk entries in the other party’s data.
To formalize this requirement, we must first define Wew of each party: during an execution of the
protocol, a party’s view consists of this party’s data, hé toin flips of this party, and all the messages
this party receives. We denote bigw 4 (74, T(B)) (view (T, T(B)), resp.) the view of Alice (Bab,
resp.) during an execution with the taie(4), 7(5)),

Definition 3.1. (Unconditional Privacy) Suppos€() is a k-anonymization function. A distributek-
anonymization protocol that implements) is unconditionally privateif there exist two families of

(randomized) algorithméM (M1, {M1{”)} such that, for anyV and any(T), T(®)) of size N,

(Mz(vA) (T, (T, TB)Y), T T(B))
(view 4 (T, T(B)), T T(B)),
(M](VB) (TB) (7AW, TB)Y), T(A) T(B))

= (view (T, 7B 7)) T(B)y,

where= denotes equality of distributions (i.e., the random vdeiamn the left side should be identi-

cally distributed as the random variable on the right sidd)e aIgorithmsM](VA) and M](VB) are called
simulators(for Alice and Bob, respectively).

Note that, in the above definition, there is no restrictiortt@running time of simulators; we implic-
itly assume that they can have unbounded computational p@\&o note that the joint distribution of
each simulator’s output and original data must be identic#the joint distribution of the corresponding
view and the original data. Privacy formalized in this wathis strongest possible, guaranteeing no extra
information is revealed even to computationally unboundédersaries. Thus we call it unconditional
privacy.

Unconditional privacy is good, but not always necessaryn&ones it suffices to guarantee privacy
against polynomial-time adversaries. Consequently, we gislightly relaxed definition of privacy as
follows.

Definition 3.2. (Polynomial-time Privacy) Suppog€() is a k-anonymization function. A distributed
k-anonymization protocol that implement¥) is private against polynomial-time adversarigghere
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exist probabilistic polynomial-time algorithnig (4), A1(5) such that, for any7(4), 7(5)),
{M(A) (T(A)’ ’C(T(A) ) T(B)))}(T(A> ,T(B))

{VieWA(T(A), T7®) )}(T(A) T(B)Ys
{MB(TE), (T, TEN))Y oy s

{viewp (T(A), T7®) )}(T<A) T(B)Y

C

<

where= denotescomputational indistinguishabilitpf probability emsemblels The algorithms/ (4
and M (P) are callecsimulators(for Alice and Bob, respectively).

4. Impossibility of Unconditional Privacy

In this section, we show that it is impossible to design uddinally private protocols for a very broad
class ofk-anonymization functions, namehormal k-anonymization functions. To rigorously define
normalk-anonymization functions, we first present a formal definitof suppression.

Definition 4.1. A k-anonymization functioriC() is by suppressioif for alltable T, alli € [1, Na+Npg|,
all j € [1,m], eitherk(T), ; = T; j or K(T'), ; = x, wherex is a symbol not belonging to the domain of
any attribute.

Normal k-anonymization functions are a class lsBnonymization functions by suppression; one
important property of these functions is that they “faingét” the symbols of each attribute. That is to
say, if we permute the symbols in any attribute’s domain Jtbleavior of thek-anonymization function
should not be affected. For example, consider two table®dS: 77 ; = 0, S11 = 1; forall i # 1,
Tin =1,8,: =2 foralj #1,T;;, = 5;;. Clearly, if we permute the symbols in the domain of
attributea;, mapping symbod to 1 and symboll to 2, then the tabld’ becomes the tablé. We hope
that the small difference betwe&hand S will not affect the behavior of thé-anonymization function.
More precisely, we hope tha&t(7") also become& (S) if we permute the symbols in the domain of
attributea; as described above.

For simplicity, wheno is a permutation on the domain of an attribute, we @€€) to denote the
table obtained by applying to that attribute off".

Definition 4.2. A k-anonymization functioriC() is insensitive to permutations of symbdl$or all j €
[1,m], all permutatiorny on the domain of;,

K(o(TW, 75)) = o(K(TW, T")).
Now we can formally define normalanonymization functions as follows.

Definition 4.3. A k-anonymization function isormalif the following three conditions are satisfied:

e Itis ak-anonymization function by suppression;

'Readers can refer to, e.g., [16], for the definitions of pbilig ensembles and computational indistinguishabhility
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e Itis insensitive to permutations of symbols;
¢ If atable is already;-anonymous, then the function maps the table to itself.

As far as we know, thé-anonymization functions implemented by many existirgnonymization
algorithms (e.g., those in [26, 23, 4]) are normal. Consetiyeit is natural for us to focus on normal
k-anonymization functions.

Theorem 4.1. Suppose thak’() is a normalk-anonymization function, and that at least one of the at-
tributes has a domain of size at ledstf N4 + Np > 2k, then there does not exist any unconditionally
private protocol that implements().

Proof:

Without loss of generality, we assume thgtis a domain of size at leadt that the domain ofi;
contains symbol§, 1, 2, and3, and that the domains of all other attributes contain symbdVe define
two N4 x (m + m/) tablesT), S and twoNp x (m + m’) tableT(5), S(B) as follows:

A _ 1 ifi=1Anj=1
] 0 otherwise

(A) 3 ifi=1An5=1
0 otherwise

B) 2 ifielLk—1Aj=1
0 otherwise

(B) 3 ifielLk—1Anj=1
Sij = -
0 otherwise
Furthermore, we define as the permutation on the domainafsuch that the two symbolisand3
are exchanged, but all other symbols remain unchangedla8iynive definer as the permutation on the
domain ofa; such that the two symbofsand3 are exchanged, but all other symbols remain unchanged.
Then clearly we have

(S, TB)) = o(TW 7By, (1)
(TW, §B)) = m(TW 7B, )

Sincek() is normal, we should have
K(o(TW,15)) = o ()(TW, 7)), ©)

K(n(TW, T®)) = m(kK(TW, TH)). (4)
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Plugging (1) into (3) and (2) into (4), we obtain
KW, 1) = o ()(TW, 7)) (5)

K(TW, 8By = w(k(T), T(B)Y). (6)

Note that the only entry of in (7Y, 7(5)) must have been suppressedkif7“), T7(%)), be-
cause otherwis& (7)), T(B)) cannot bei-anonymous. Thereford; (T4, T(5)) does not contain the
symbol 1. Similarly, we can show thatt(T), T(5)) does not contain the symbal Furthermore,
K(TW, T(B)) does not contain the symbaisince (7, T(5)) does not have this symbol. Hence, we
obtain

IC(T(A),T(B)) - O.(,C(T(A)’T(B))); @)
IC(T(A),T(B)) - W(K(T(A)’T(B))). ®)
Combining (5), (6), (7), and (8), we have

KT, 7By = k(s 7By = (7, §(B)), 9)

Recall thatC() maps allk-anonymous tables to themselves. Sifge"), S(5)) is alreadyk-anonymous,
we havelC(S() | S(B)) = (5 §(B)), which implies

K(SW, 8By £ (T, 1), (10)

because there exists symbah KC(T4), 7)),

Next, we show by contradiction that there does not exist argpnditionally private protocol that
implementsiC(). Suppose that there exists such an unconditionally prpaitocol. Then we use the
techniques given by Kushilevitz [20] to show that (9) and)(&@d to a contradictioA.

Denote byM (T4, T(B)) the messages sent in the protocol when the dat@i®), 7(%)). Since

the protocol is unconditionally private, there exists ayoathm M J(VB ) such that

(M](VB) (TB) (T, TB)Y), 7AW T(B))
= (viewB(T(A), T(B)), T(A),T(B))a

which implies

MP(T®) (TN TPB)) = view(TW, TB)),

)

Note thatM (7D, T(B)) is a part ofview s (TY), T(B)). If we denote the rest afiew 3(T4), T(5)) by
view's (T, T(B)), then we can rewrite the above equation as

M](VB) (T(B) : /C(T(A) ’ T(B)))
= (M(TW, TB), viewy (T, T(5))),

)

2In [20], it has been shown that a function satisfying botha(®) (10) cannot have an unconditionally private protocoweler,
since our definition of unconditional privacy is formaliziedh slightly different way, for completeness we still indua proof
based on their techniques.
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Similarly, we can obtain

MP(T®), (S, 7))
= (M(SW,T®) viewy (S, TB)Y).

Combining (9) with the above two equations, we have

M(TW 7By = M8 7B, (11)
Similarly, we can also obtain
M(TW, 7B = M1 5B, (12)
Now we consider a specific message sequédgeuch that
Pr[M (S, TB)) = My > 0. (13)
Then by (11) and (12), we know
Pr[M(T™, SB)Y = My > 0. (14)

Let the number of messagesifyy be L. Suppose thatly, = (Mél), .. ,MéL)). We denote b)Pr[Méé)
@, (MY, ) resp. Pr[M? T® (Y, .. M) the probability that Alice (resp.,
Bob) sends messagﬂéé) in the ¢th round when her data iB*) (resp., his data i§(5)) and the first

¢ — 1 rounds of messages a(rM(l), e ,Mééil)). Thus (13) can be rewritten as

¢is odd
[T Priagg?1s™, (agV,...
1<0<L

¢is even

< [ Prmd1r®, (a,. V) >0,
1<0<L

g_
My

)

which immediately implies
¢is odd

[T Pesd?1s@, gV, ... 050 > . (15)
1<¢<L

Similarly, we can obtain from (14) that
¢is even

[T Pea”1s®), (ag8), ... D)) > o. (16)
1<4<L
Combining the above two equations, we have
¢is odd
[T Priagg?1s™, (V...
1<¢<L
¢is even
< [T Prm?1s®, ", ME)) >0,
1<¢<L
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which is equivalent to
Pr[M(SW, SB)) = My > 0. (17)

Note that Alice’s output is determined by her data and thesagss in the protocol. By (13) we know
that Alice outputsC(S™), T(5)) when her data i$(4) and the messages al&. By (17) we know that
Alice has the same output with a positive probability wheit&has data(4) and Bob has data(?).
Since in this case Alice’s output should alwaysiiesY, S(5)), we obtain

IC(S(A),T(B)) — IC(S(A),S(B)).

However, (9) and (10) imply
K(SW 7By £ (5 5By,

Contradiction. O

5. Efficient ID-based Cryptographic Solution

Since itis impossible to design unconditionally privatetpcols that implement normatanonymization
functions, a natural question is whether it is possible sigleprotocols private against polynomial-time
adversaries for these functions. In this section, we pteagurotocol that implements a norméd
anonymization function and guarantees privacy againgtnpohial-time adversaries. An advantage of
our protocol is that it is ID-based, which means the involpadties do not need to have a priori knowl-
edge of each other’s public key. Before we go into the detailgur protocol design, we first explain
what is ID-based cryptography, why it is useful, and whatlkifi ID-based encryption scheme we need
in designing our protocol.

5.1. ID-based Cryptography and Waters Encryption

ID-based cryptography was first proposed by Shamir [27&r&bneh and Franklin’s seminal work [9],
a lot of practical ID-based crypto-systems have been dedigior example, [8, 35]. Using an ID-based
crypto-system, one can encrypt a message for any receitleowtia priori knowledge of the receiver's
public key. As long as the receiver’s ID is known, the endiypttan be easily performed. The receiver
obtains a private key from the Private Key Generator (PKGhaithis private key she can decrypt any
message encrypted under her ID.

ID-based cryptography gives us a lot of convenience andbiléxi In particular, it makes key
renewal easier because updating public key informatiomtisiacessary. For instance, one can encrypt
messages under the ID “department secretary 11/2005” ireidber 2005, and then encrypt messages
under the ID “department secretary 12/2005” in Decembeb2dis allows the department secretary
to renew her private key every month; it is no longer necgskarthe secretary to make a monthly
announcement of her new public key .

In our problem of distributed-anonymization, the involved parties are owners of laige-data.
Consequently, it is essential for them to renew keys fretiyiefhis is one of the reasons we choose to
design our protocol using ID-based cryptography.



S. Zhong/On Distributed k-Anonymization 421

5.1.1. Waters Encryption

Our protocol is based on a specific ID-based encryption seh&Waters encryption scheme [35], al-
though it can be replaced by other ID-based encryption sekanith similar properties (being homo-
morphic and having rerandomization operations, which vadl gxplain shortly). To be concrete, we
first give a brief review of Waters encryption scheme, whisbaubilinear maps.

Definition 5.1. (Admissible Bilinear Map) A mag : Gy x G; — Gy (whereG, G, are groups of the
same prime order) is aadmissible bilinear maff, for a generatog of groupGy,

e foralla,b, é(g%, ¢°) = é(g, 9)™;

e ¢(g,9) # 1.

Note that admissible bilinear maps do exist: Boneh and Riraf constructed such maps using
Weil Pairing.

Now suppose thatis a security parameter and thes ans-bit prime. LetG; andGs be two groups
of prime orderq, andé : G; x G; — G4 be an admissible bilinear map with generagasf group G, .
Assume that is an independent parameter and that IDsralst strings.

Initialization ~ For «, 8 picked uniformly and independentlyfrom [0, ¢], the PKG setsy; = ¢,
g2 = ¢®. The PKG also chooses a random valdec G;, and a random-dimensional vector
U = (uy,...,u,), where eachy; is chosen at random frof®,. The parameters, g1, g2, v’ andU
are made public.

Private Key Generation For an IDv, the private key is
v = (gaﬁ(u, H ui)r’gr)’
v;=1

wherew; is theith bit of v andr € [0, ¢ — 1] is picked at random.

Encryption  An encryption of plaintexp under IDv is
C= Ev(pat) = (p : é(gl)gZ)tagta (u/ H u’i)t))
v;=1

wheret € [0, ¢ — 1] is picked at random.

Decryption Suppose that’ = (C4, Cs, C3) is a valid ciphertext under ID. ThenC can be decrypted
using the private key, = (dy, ds):
é(dQ) C3)

%In this paper, whenever we choose a random number, we alwmgase it uniformly and independently, unless otherwise
specified.
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Homomorphic Property The Waters ID-based encryption scheméasnomorphic If we define the
multiplication of two tuples as the multiplication of theroesponding elements in each dimension, then
we have

E,(p1ip2, t1 + t2) = Ey(p1,t1) Ey(p2, t2).

Rerandomization Operation A ciphertextC = (Cy,Cs,C3) can bererandomizedusing only the
public parameters:
C' = (Cré(g1,92)", Cag”, Cs(u T w)").

v;=1

It can be easily verified that the resdlt is another encryption of the same cleartext:

Dy, (C") = Dq, (C).

5.2. Solution Design

In this section, we briefly present the intuitive ideas wetasdesign our protocol. We leave a complete
and detailed description of our protocol to Section 5.3.

5.2.1. Suppressing Less Frequent Quasi-identifiers

The first idea of our protocol design is to decide whether epetsi-identifier appears for at ledstimes
in the table. If a quasi-identifier appears for fewer thaimes, then we suppress all occurrences of this
guasi-identifier.

Comparing Frequency with Threshold It is easy to decide whethergavenquasi-identifier appears
for at leastk times in the table. Suppose that this quasi-identifier ajgfeay times in Alice’s data. Then
Alice prepares a list ok ciphertextsunder her own IDto represeny: If y < k, the firsty ciphertexts
are encryptions of and the remaining ciphertexts are encryptions of randombeusa Ify > k&, all
the k ciphertexts are encryptions @f Alice sends this list of ciphertexts to Bob, who clearly wan
decrypt them. However, Bob can obtain a ciphertext reptegemwhether the quasi-identifier appears
for at leastk times in the table: Assume that the quasi-identifier appfesirg’ times in Bob’s data. If
y' < k, Bob chooses thék — ¢/)th ciphertext to represent the result. Note that (with highbpbility)
this is an encryption of if and only if k — ¢/ < y, which is equivalent to that the quasi-identifier appears
for at leastk times in the table. So when Bob sends this ciphertext bacKite Aall Alice needs to do
is to decrypt the ciphertext and compare the cleartext wittf 3/ > %, Bob already knows that the
quasi-identifier appears for at ledstimes in the table. So he encrygtsinder Alice’s ID and sends the
ciphertext to Alice.

Multiple Quasi-identifiers Nevertheless, in our problem there are many quasi-idenstif® we need
to extend the above approach to multiple quasi-identifietere the major technical challenge is that,
when Alice sends mank-ciphertext lists to Bob, Bob does not know which list cop@sds to which
quasi-identifier. Note that Alice cannot tell Bob the quiagntifiers corresponding to these ciphertext
lists, because otherwise Bob would learn the set of quasitifiers appeared in Alice’s data.
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To solve this problem, for each list of ciphertexts sent bicé\| Bob associates the list widvery
guasi-identifier appeared in his data and applies the abeseribed approach. Suppose that this list of
ciphertexts actually corresponds to quasi-identifigrwhich appearg; times in Alice’s data. Then for
each quasi-identifier}, which appearg«; times in Bob’s data, Bob uses the approach we just described
above to obtain a ciphertext that represents wheg;hery;. > k. Then this ciphertext is an encryption of
Lif y;+y; > k, and an encryption of random cleartexyif+-y: < k. Since we are only interested in the
caser; = x; (i.e., the case Bob’s quasi-identifier matches Alice’sdistiphertext), we want to multiply
this ciphertext by an encryption of random cleartext when# 2. To achieve this goal, we note that,
for a random exponers; ;, if x; # 7, (i—i)eivj is a random element; if; = z7, (%’.)Gi’j = 1. Thus it
suffices for Bob to multiply the above ciphertext by an entiop of (%)%’. Now suppose that each
ciphertext list is accompanied by an encryption of the cgromding quaysi-identifieri under Alice’s ID.
Then computing the encryption ()%)97%.7‘ is easy because Bob can use the homomorphic property of the

encryption scheme.

Hiding Numbers of Quasi-identifiers A subtle issue is how many lists of ciphertexts Alice should
send to Bob and how many quasi-identifiers Bob should agsoe&ch list with. These cannot be the
numbers of different quasi-identifiers appeared in Alicaisl Bob’s data, because we do not want them
to reveal the numbers of different quasi-identifiers to eattier. Our solution is to use a public upper
bound of these numbers. To get a sufficient number of cipktelites, Alice should add “dumb” lists
with z;s that do not match any legal quasi-identifiers. SimilarigbBhould add “dumb&}s.

5.2.2. Testingk-Anonymity

So far we have ignored a special case in our design—the castether thank (but more thard) rows

in the table have suppressed quasi-identifiers. In this dase do not suppress more quasi-identifiers,
then the table cannot Beanonymous, although each unsuppressed quasi-identiftbe itable appears
for at leastk times.

To deal with this special case, before Alice interacts withb B decide whether each quasi-identifier
appears for at leagttimes in the table, she chooses-a set ofk rows, and suppresses the quasi-identifier
entries ino. Nevertheless, this leads to another problem: We have te siade our protocol implements
a normal k-anonymization function; so when the original table is aftek-anonymous, Alice cannot
suppress the quasi-identifier entriessin

We solve the above problem by adding a phase-ahonymity test to the beginning of our protocol.
If Alice and Bob find that the table is alreadyanonymous, they send their data to each other and output
the table. Otherwise, they go into the second phase, in whiice suppresses the quasi-identifiers in
o and then interacts with Bob to decide whether each quasiifilr appears for at leagttimes in the
table.

Basic Techniques ofk-Anonymity Test In this first phase, Alice divides the quasi-identifiers im he
data into two sets@ 4 o, the set of quasi-identifiers appeared for at Idasmes in her data, an@ 4 1,

the set of quasi-identifiers appeared for at niost1 times (and at least one time) in her data. Similarly,
Bob divides the quasi-identifiers in his data irffg; o andQ ;1. It is not hard to see that the table is
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k-anonymous if and only if241 — Qo = @1 — Qa,0 and every quasi-identifier i 41 — @p,o
appears for at leagttimes in the entire table.

Let's temporarily assume that disclosiaty o and@ g o does not violate privacy. Then Alice sends
Q4,0 to Bob and Bob send@ g o to Alice, so that Alice can comput@ 4 1 — @ s, and Bob can compute
@B — Qa,0. Now both Alice and Bob permute the quasi-identifiers in acsfweorder (e.g., in the
increasing order of binary representations). So, the tatd&eadyk-anonymous if and only if for ali,
theith quasi-identifier irQ 4 1 — @ B o is equal to theth quasi-identifier i) g 1 — Q 4,0 and the number
of this quasi-identifier's occurrences in the entire tablatileast.

For eachi, using the techniqgue we have described, it is easy to let Baek A ciphertext (which
is encrypted under Alice’s ID) representing whether thesg@identifier appears for at leakttimes in
the entire table. To ensure that the two quasi-identifieesegual, we can multiply this ciphertext by
an encryption of a random power of the quotient of the two Higemtifiers (which is obtained using
the homomorphic property). The result is an encryption dfthe two quasi-identifiers are equal and
the number of occurrences is at leastit is an encryption of random cleartext otherwise. Givea th
ciphertext we obtain for each we can derive a single ciphertext that represents wheltgetable is
k-anonymous: We simply take the product of the ciphertextsilfa. When this single ciphertext is sent
back to Alice, Alice can learn whether the table is alreaegnonymous.

In the above procedure éanonymity test, since we do not want to disclose the numiregsiasi-
identifiers inQ 4,1 — @B, andQp,1 — Q 4,0, We again need to add “dumb” quasi-identifiers to reach a
public upper bound of the quasi-identifier numbers.

Protecting Q40 Now we go back to the assumption we have made: disclo§ing and@ s does
not violate privacy. Is this always true? Not necessa&py; o can be derived from the final output of
our protocol because, after theanonymization, all quasi-identifiers @z still appear for at least
times in Bob’s part of the data. Therefore, we can safely bay disclosingl s o to Alice does not
violate privacy. However, we do not have a similar argumentisclosing@ 4o to Bob. Recall that we
suppress the quasi-identifier entriesrir-this may affect some quasi-identifiers@ o, bringing down
the numbers of their occurrences in Alice’s data to less than

To minimize this problem, we chooseto be thek rows in Alice’s data with the least frequently
appeared quasi-identifiers. Then clearly, at most one gdestifier in(Q 4 o can be affected. Suppose
that a quasi-identifier™ € Q4 is affected. In this case, disclosirig o to Bob violates privacy, but
disclosingQ’A,O = Qa0 — {z*} does not. So at the beginning of okvanonymity test, Alice sends
Q'4 o, NOtQ 40, to Bob. In this case, it is not hard to see that the table-gmonymous if and only if
@) for all i, theith quasi-identifier iNQ 41 — @p, is equal to theth quasi-identifier inYp 1 — Q’AO
and the number of this quasi-identifier's occurrences iretitee table is at leadt; or (b) for all 7, the
ith quasi-identifier iNQ4,1 — @p,0) U {z*} is equal to theth quasi-identifier i) 5,1 — Q4 , and the
number of this quasi-identifier's occurrences in the ertilde is at least.

Using the technique we have described, Bob can obtain twwedigxts (both of which encrypted
under Alice’s ID), one representing whether (a) holds, draldther representing whether (b) holds.
Note that (a) and (b) cannot hold simultaneously. Therefithrese two ciphertexts are one encryption
of 1 and one encryption of random cleartext if the tablé-gnonymous; they are both encryptions of
random cleartexts otherwise. Bob switches the order of#leciphertexts with probabilit)%, so that
Alice won't know learn which ciphertext corresponds to whaondition. Then Bob sends them to Alice,
who decrypts them to get the result/ofanonymity test.
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5.2.3. Ensuring Protocol Correctness

Finally, we notice a small probability of failure using thezhniques described above: We always use a
ciphertext ofl to represent “yes” and a ciphertext of random cleartextpoa®gent “no.” Since the random
cleartext can be equal fowith a negligible probability, the output of our protocolrche wrong with a
negligible probability. Nevertheless, having a wrong oiip undesirable, even if it only happens with a
negligible probability. Consequently, we add a step to ti & the protocol to ensure the correctness:
The two parties check whether the table they obtainddanonymous. If it is, they output the table;
otherwise, they send their original data to each other aridnpe k-anonymization. Note that sending
original data to each other violates privacy. However, tny happens with a negligible probability,
and thus is not a problem when we consider polynomial-timeséries.

5.3. Protocol

Below is a detailed description of our protocol.

Phase 1 Alice divides the quasi-identifiers in her data into two s&ps; o, the set of quasi-identifiers
appeared for at leasttimes in her data, an@ 4 1, the set of quasi-identifiers appeared for at niost1
times but at least one time in her data. lkebe thek rows in Alice’s data with the least frequently
appeared quasi-identifiers. L@L’A0 be the set of quasi-identfiers that appear for at Iéaiines in
T — o. Alice sendsy’, , to Bob.

Bob divides the quasi-identifiers in his data into two s€ls;, the set of quasi-identifiers appeared
for at leastk times in his data, an@ s 1, the set of quasi-identifiers appeared for at ntost1 times but
at least one time in his data. Bob serdgs ( to Alice.

Alice permutes the quasi-identifiers ; — Qo in the increasing order of their binary represen-
tations. Suppose that these quasi-identifierseare. . , z,, ,, in the above mentioned order. For eagh
(1 <i<wy), lety; be the number of rows in Alice’s data with quasi-identifigr Then, letA be an ele-
ment ofG; that does not correspond to any valid quasi-identifier. Bohé € [w4 + 1, max{ N, Ng}],
Alice setsx; = A andy; = k. For eachi € [1, max{Ny4, Np}|, Alice encryptsz; under her own ID:

Xi(o) = FEa(xi tao),

wheret 4 ; o is picked uniformly and independently frofl, ¢ — 1]. For eachi € [1, max{N4, Np}],
eachj € [1, k], Alice defines

1 if j<wy;
I
” random element ofz; otherwise

Alice encrypts each; ; under her own ID:

ng) = Ea(zij,ta,;),
wheret 4 ; ; is picked uniformly and independently frojt, ¢ — 1].

If Q4o = Qay, Alice does the follows: For each € [1, max{Na, Np}|, Alice setin(l) to a
random encryption of random cleartext; for each [1, max{ N4, Np}|, eachj € [1, k], Alice setsZZ.%)
to a random encryption of random cleartext.
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If Q/A,o # Q 4,0, Alice does the follows: Let the only quasi-identifier@hy o — Q’AO bez*. Suppose
that the binary representation of is greater than that of; but smaller than that of ;4. (If the binary
representation af* is greater than that aof,, ,, then Alice defined = wy; if the binary representation

of z* is smaller than that of;, then Alice defined = 0.) For eachi € [1, ], Alice setin(l) to a
rerandomization oﬁ(i(o); For each € [1,I] and eacly € [1, k], Alice setsZZ%.) to a rerandomization of

ZZ.(S.). Alice setsXﬁL)1 to a random encryption af*. Lety* be the number of times* appears in Alice’s

data. For each € [1, y*], Alice setsZ}jL)lj to a random encryption df, for eachj € [y* + 1, k], Alice

setsZﬁ)1 ; to arandom encryption of random cleartext. For eaehI + 2, max{ N4, Np}], Alice sets
X(l) to a rerandomization OX(O)l; For eachi € [I + 2, max{N4, Np}] and eacly € [1, k|, Alice sets

2

Z( ) to a rerandomization di’( )

i—1,5"
Regardless of wheth&pa o = Qs Or Qao # Q' o, Alice sends((X(O ,(Zfol), Zﬁ)lz)),
0 0 0 1) (1) 1
KO vy Z v o 20 i) and (X2 z0)
) 1 (1)
(X (NN} s NaNg11 -+ Lo Ns N} 1)) 1O BOD.

Bob permutes the quasi-identifiers @ ; QAO in the increasing order of their binary repre-
sentations. Suppose that these quasi- |dent|f|er$gre , 2y, iN the above mentioned order. For
eachz; (1 < i < wg), lety, be the number of rows in Bob’s data with quasi-identifi¢r For each
i € [wp + 1, max{N4, Np}], Bob setst, = A andy, = k. For each € [1, max{N4, Np}], Bob sets

0 .
Z/(O) _ ZZ'(,k)fy; if y; <k
’ Ea(1,0) if y, > k;

and

Z/(l) o ZZ(? yl |f y; < k
' EA(1,0) if y, > E.

Then Bob computes

max{NA,NB} (())
X
R = Z/(O) ) 73,0
SR L B T
and
max{NA,NB} (1)
X,
R = Z((l) T i
S L

where eachr; ; is picked independently and uniformly frof, ¢ — 1]. Bob rerandomizes,, R; and
with probability% switches their order. Let the result of the above operatieng/,, R}. Bob sends?),
R to Alice.

Alice decryptsRy, R}. If one of the plaintexts obtained is then Alice tells Bob that the original
table has beek-anonymous and sends Bob her own datd). In this case, Bob sends his own data
TB) back to Alice and then they output the entire table. If botiirexts are not equal th then the
protocol goes into Phase 2.
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Phase 2 Recall thatr is thek rows in Alice’s data with the least frequently appeared gigentifiers.
Alice suppresses the quasi-identifiers in thésews. Then she computd$Xy, (Z11, ..., Z1x)),

s (X max{Na N5} (Zmas{Na,Np}1s - - - Zmax{Na,N5}k))) from her current data just as she computed

(X7 (280 ZED) K vmy Zicgva vy Zanasva ) frOm her original
data. bShe senc{e{Xl, (Zl,l’ Cey Zl,k:))v ey (Xmax{NA,NB}v (Zmax{NA,NB},l’ Cey Zmax{NA,NB},k;)))
to Bob.

Let vp be the total number of different quasi-identifiers in Bob&ad Suppose that the quasi-
identifiers appeared in Bob's data ar§, ..., ;. Foreach: (1 <i < vp), lety; be the number of
rows in Bob’s data with quasi-identifier/. For eachi € [vp + 1,max{N4, Np}|, Bob setst] = A’
andy! = k, whereA’ # A is another element @, that does not correspond to any quasi-identifier. For

eachi € [1,max{N4, Np}] and eacly € [1, max{N4, Np}|, Bob computes

7 X 0;; i "
’_YA o Zl7k_y;/(m) »J |f yj < k
vy X, 0; T
(EA(iE;/_,O)) »J if yj > k,

where eaclt; ; is picked from[0, ¢ — 1] independently and uniformly. For eack [1, max{Na, Ng}],
Bob repermutes the ligty; 1, . - . , Vi max{n4,N5}) randomly; let the result bey, ,, . . ., g’maX{NmNB}).
Bob sends; ;)ie[1,max{N4,N5}].je[L,max{N4,N5}] 10 Alice.

For eachi that corresponds to a quasi-identifier in her current daticeAdecrypts(v; ;.- -,

Vi max{n4,Np}) 10 S€€ Whether there islalf not, Alice suppresses all occurrences of this quasitidler.
After suppressing all necessary quasi-identifiers, Alimeds Bob a list of quasi-identifiers that remain
in her current data.

For each quasi-identifier in Bob’s data, if it appears for astik — 1 times and it is not in the list
sent by Alice, then Bob suppresses all its occurrences.

Bob and Alice send their current data to each other and chdeither the current table ik-
anonymous. If it is, then they output the entire currentdal@therwise, they send their original data to
each other and run a goé@danonymization algorithm on the entire original table; linthey output the
result of thek-anonymization algorithm.

5.4. Protocol Analysis
Theorem 5.1. The protocol presented in Section 5.3 implements a nokssalonymization function.

The proof of Theorem 5.1 is straightforward; so we do notgmeg here.
Theorem 5.2. The protocol presented in Section 5.3 is private againgtnaohial-time adversaries.

Proof:
We construct the two simulators as follows. (All encryptimgerations below are performed under the
ID of Alice.)

M@ simulates Alice’s datd’Y and coin flips using” ) itself (which is one of\/(4)’s input) and
coin flips of the same distributiond4 (1) simulates the first-round message Alice received usingehe s
of quasi-identifiers appeared for at leagtmes in the lastV rows of (7)), TB)) If (T, T(B))
does not have any entry ef M/ (4) simulates the second-round messalg (R,) Alice received using a
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random encryption of and a random encryption of random cleartext, in a randonrpidé?) simulates
the third-round messagd'{®)) Alice received using the lasV rows of (T, T(B)); then M)
finishes the simulation in this case. Otherwis&*) simulates the second-round message Alice received
using two random encryptions of random cleartexts and pag#o the simulation of the second phase.
At the beginning of second phas&[(Y) takesT(4) and suppresses the quasi-identifiersri(the
k rows with the least frequently appeared quasi-identifierg({); let the result bes(Y). Now M (4)
considers each quasi-identifier that appears for at leastior but at most — 1 times inS(“4), and at
mostk — 1 times in the lasiV 3 rows of (T4, T(B)). If this quasi-identifier also appears in the filgf
rows of (T, 7)), M) simulates the correspondinig; ;- - -, ¥/ sy (n,.x,;)) iN the third-round
message usingax{N 4, Ng} — 1 random encryptions of random cleartexts and a random eticnypf
1, in arandom order; otherwisg/ (4 simulateq(y; ..., ;7maX{NA7NB}) usingmax{N 4, Np} random

encryptions of random cleartexts in a random ordéf.) simulates all the remaining parts of the
third-round message Alice received using random encrygtas random cleartexts\/ (Y simulates the
fourth-round message Alice received using the Mgtrows in (T4, T(5)). M (4) does not simulate
the possible fifth-round message Alice received, becaum@yitappears with a negligible probability.

M®B) simulates Bob’s dat@(?) and coin flips using™(?) itself (which is one of\/ (?)’s input) and
coin flips of the same distributions\/ (%) simulates the first-round message Bob received using the set
of quasi-identifiers appeared for at leagimes in the firstV 4 rows of (74, T(B)). M(B) simulates
the second-round message Bob received ug{kg+ 1) max{N4, Ng} random encryptions of random
cleartexts. IfKC(T), T(P)) does not have any entry ef M/(5) simulates the third-round message he
received using “The table has bekranonymous” and the firsV, rows in C(7M), T(5)); then M (B)
finishes the simulation in this case. Otherwis&(®) proceeds to the simulation of the second phase.

In the second phas@/(?) simulates the third-round message Bob received uging 1) max{Ny,
Np} random encryptions of random cleartext$(?) simulates the fourth-round message Bob received
using the list of quasi-identifiers in the la&tz rows of (T4, T(B)). M (B) simulates the fifth-round
message Bob received using the fiét rows in (T, 7(B)). M(P) does not simulate the possible
sixth-round message, also because it only appears withligibégprobability.

The computational indistinguishability immediately falls from the security of the encryption
scheme. O

6. Conclusion and Future Work

In this paper, we investigate distributédanonymization between two owners of a (horizontally parti
tioned) distributed database. We show that unconditiorighqy cannot be achieved for normabanony-
mization functions. We present an efficient ID-based pmittitat implements a normé&tanonymization
function and achieves privacy against polynomial-timeeasaries.

While our protocol provides very strong privacy protectiore must admit that it imot optimalin
terms ofk-anonymization. For example, we note that, for each rowpooitocol either suppresses its en-
tire quasi-identifier, or keeps its quasi-identifier: it aesuppresses part of a quasi-identifier. Clearly, our
protocol has suppressed more than necessary to adhimvenymity. We leave it for future investigation
how to design a privacy-preserving protocol for optirhednonymization.

In another aspect, our results can be extended to three @ paoties. First, we observe that, given
any multi-party protocol, if we divide the participantsarttvo groups, then we obtain a two-party proto-
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col. Consequently, given the impossibility of uncondiibprivacy for two parties, in the settings of three
or more parties, there is no unconditionally private protdbat implements normat-anonymization
functions as well. Second, it is non-trivial to design a riapétrty protocol private against polynomial-
time adversaries based on our two-party protocol. Howeweexpect that the techniques we use in the
design of our two-party protocol will also be useful in thesige of multi-party protocols.
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