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Abstract. When a database owner needs to disclose her data, she cank-anonymize her data to pro-
tect the involved individuals’ privacy. However, if the data is distributed between two owners, then it
is an open question whether the two owners can jointlyk-anonymize the union of their data, such that
the information suppressed in one owner’s data is not revealed to the other owner. In this paper, we
study this problem ofdistributedk-anonymization. We have two major results: First, it is impossible
to design an unconditionally private protocol that implements anynormalk-anonymization function,
where normalk-anonymization functions are a very broad class ofk-anonymization functions. Sec-
ond, we give an efficent protocol that implements a normalk-anonymization function and show that
it is private against polynomial-time adversaries. Our results have many potential applications and
can be extended to three or more parties.

Keywords: k-anonymity; protocol; secure computation.

1. Introduction

Privacy concerns have been increasingly important in our society. Nowadays, it is easier than ever to
locate the needed information, which gives us great convenience. But such easiness of finding informa-
tion also implies easiness of violating people’s privacy. To address privacy concerns, when a database
containing sensitive information (e.g., health information) is made available to public access, we often
eliminate the identifier attribute(s) from the database. However, only eliminating the identifier attribute
is not sufficient for privacy protection, because adversaries can combine the information provided by this
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database with information from other public sources. A goodexample was given by Sweeney [31], in
which one can find out who has what disease using a public database and voter lists.

Samarati and Sweeney [25] have proposedk-anonymization, a powerful tool to solve the above prob-
lem. We illustrate the idea ofk-anonymization using a simple example: Consider a table that contains
health information of patients (Table 1), where each row is apatient’s phone number, age, blood test re-
sult, and urine test result. We call the set of attributes{Phone Number, Age} a quasi-identifier[12, 31],
because adversaries can use these attributes to identify a patient with a significant probability. In this
paper, we call an attribute aquasi-identifier attributeif it is in the quasi-identifier. To prevent adversaries
from using quasi-identifiers to violate individuals’ privacy, Samarati and Sweeney suggest to make the
tablek-anonymous[25]. In ak-anonymous table, if a value of the quasi-identifier appears, then it must
appear for at leastk times. Therefore, each involved individual (patient in ourexample) is “hidden”
among at leastk peers, so that the adversary cannot use an individual’s quasi-identifier to identify her.

The procedure ofk-anonymizationcan be achieved in various ways; one possibility is that we replace
some entries with⋆ (calledsuppression). In this paper, we focus onk-anonymization by suppression.

Contact Phone Number Age of Patient Blood Test Result Urine Test Result

645-3032 45 Normal Abnormal

645-3138 25 Normal Normal

645-3138 32 Normal Normal

645-3138 26 Abnormal Normal

645-3084 45 Normal Normal

Table 1. A Table of Health Data

There have been quite a few algorithms fork-anonymization [29, 25, 31, 30, 26, 23]. Nevertheless,
these algorithms can be directly applied only if the data is owned by a single entity. In some applications,
the data is distributed between two (or even more) owners. For example, a survey may be carried out by
two medical researchers, each of whom has a group of patients; thus each researcher owns a part of the
data obtained in the survey. In such a case, ideally, the two data owners should jointlyk-anonymize their
data to protect the involved individuals’ privacy, such that the suppressed information in each owner’s
data is not revealed to the other owner. We call this problemdistributedk-anonymization. Note that
distributedk-anonymization is different fromprivacy-enhancingk-anonymization[38], which performs
k-anonymization while the data is collected. (See Section 2 for detailed discussion of the difference.)
Our objective in this paper is to find out whether distributedk-anonymization is possible, and if possible,
how we can perform distributedk-anonymization.

1.1. Our Contributions

As we have mentioned, in this paper we study the problem of distributedk-anonymization. Specifically,
we assume that there is a table of data and two data owners; thetable is horizontally partitioned, i.e., it
is divided into two disjoint subsets of rows and each data owner has one of the subsets. We ask whether
there exists a protocol thatk-anonymizes the table privately. That is, we ask whether there is a protocol
such that, at the end of the protocl, the two data owners output thek-anonymized table, and that each
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data owner learns nothing about the information suppressedin the data of the other owner. We have two
major results:

• Consider thek-anonymization functionimplemented by the protocol, i.e., the function that maps
each input of the protcol to the corresponding output. Our first major result is that, if we require
unconditional privacy, the strongest form of privacy as defined in information theory, then no
protocol can implement anynormal k-anonymization function. Here normalk-anonymization
functions refer to a very broad class ofk-anonymization functions, including thek-anonymization
functions implemented by many existingk-anonymization algorithms.

• Our second major result is that, if we relax our privacy requirement a little and requirepri-
vacy against polynomial-time adversaries, then there is a protocol that implements a normalk-
anonymization function. We give an “ID-based” protocol that does not need the two data owners
to have a priori knowledge of each other’s public key; as longas the two data owners know each
other’s ID, they can execute this protocol tok-anonymize the data privately.

We stress that our results can be extended to more parties, although in this paper we focus on two-
party distributedk-anonymization only.

We briefly overview related work in Section 2. In Section 3, wepresent technical preliminaries. Our
two major results are detailed in Sections 4 and 5, respectively. We conclude in Section 6.

2. Related Work

Now we give a very brief overview of related work from variousareas.

k-Anonymization Samarati and Sweeney were the first to studyk-anonymization [29, 25, 31, 30, 26].
Meyerson and Williams [23] consideredk-anonymization by suppression; they showed that minimizing
the number of suppressed entries is NP-hard and gave approximation algorithms for this problem. Fur-
thermore, Aggarwal et al. [4] showed that the problem is NP-hard even when we assume ternary-valued
attributes; in addition, they presented algorithms that have improved approximation ratios. Machanava-
jjhala et al. [22] pointed out thatk-anonymity may not suffice for privacy protection in some cases; they
proposed an enhanced privacy property calledℓ-diversity.

Zhong et al. [38] studiedprivacy-enhancingk-anonymization, which also involves distributed com-
puting. However, their scenario is significantly differentfrom ours: They consider two problem formula-
tions, both involving a large number of customers, each of whom owns a row of a table; their first problem
formulation is extracting thek-anonymous part of the table, notk-anonymization; in their second prob-
lem formulation,k-anonymization is performed while a miner collects the datafrom the customers. In
contrast, in this paper we consider two owners of a distributed database; theyk-anonymize the data while
they combine their data together. Furthermore, the solution to the second problem formulation in [38]
reveals partial information even to a polynomial-time adversary. In contrast, our protocol in Section 5
does not reveal any information to polynomial-time adversaries.
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Private Two-Party Computation Chor and Kushilevitz [11] investigated private two-party computa-
tion of booleanfunctions; they showed that a boolean function has an unconditionally private protocol
if and only if it is an xor of two locally computable functions. Kushilevitz [20] extended the study to
general functions and showed that a general function has an unconditionally private protocol if and only
if its corresponding matrix isdecomposable(see [20] for the definition of decomposable matrix). Note
that in our problem, it is non-trivial to see whether ak-anonymization function corresponds to a decom-
posable matrix or not. So given the result of [20], it is stillopen whether there are unconditionally private
protocols fork-anonymization.

For privacy against polynomial-time adversaries, general-purpose cryptographic protocols have been
constructed for arbitrary functions, the first of which was given by Yao [37]. (See [16] for a systematic
presentation of general-purpose protocols). However, just as mentioned in [16], due to highly expensive
costs in computation and communication, usually these constructions cannot be applied directly.

ID-based Cryptography In Section 5, we present a protocol private against polynomial-time adver-
saries, which isID-based. Here being ID-based means that the involved parties do not need to have
a priori knowledge of each other’s public key. As long as the involved parties know each other’s ID,
the protocol can be executed. This gives us a lot of convenience and flexibility. Our protocol uses a
specific ID-based encryption scheme developed by Waters [35], but it can be replaced by other ID-based
encryption schemes with similar properties. For more aboutID-based cryptography, the readers can refer
to [27, 9, 8].

Other Related Work In statistical databases, there have been a good number of results on protecting
individual privacy while allowing data sharing [2, 28]. Theproposed methods include query restriction
(e.g., [19, 10]) and data perturbation (e.g., [24, 32, 7, 1]). Also in this context, Dinur and Nissim [13]
studied the tradeoff between privacy and utility.

In privacy-preserving data mining, the main technical challenge is also how to protect sensitive data
while maintaining data utility. Some results in this area can be found in [6, 5, 15, 14, 18, 21, 33, 34, 17, 3].

3. Technical Preliminaries

Consider a table withm quasi-identifier attributes andm′ other attributes. Without loss of generality,
we assume thata1, . . . , am are the quasi-identifier attributes and thatam+1, . . . , am+m′ are the other
attributes. We say the table isk-anonymous if each value of (a1,. . . ,am) either does not appear in the
table, or appears in the table for at leastk times.

Suppose that there are two involved parties: Alice and Bob. The table is partitioned into two (disjoint)
sets of rows: Alice hasNA rows, while Bob hasNB rows. We denote Alice’s part of the table byT (A) and
Bob’s part byT (B). Theith row ofT (A) (resp.,T (B)) is denoted byT (A)

i (resp.,T (B)
i ) and thejth entry of

this row is denoted byT (A)
i,j (resp.,T (B)

i,j ). LetK() be a function that maps(NA+NB)×(m+m′) tables to
(NA+NB)×(m+m′) tables. We sayK() is ak-anonymization functionif for all (NA+NB)×(m+m′)
tableT , K(T ) is k-anonymous.

We assume that there is a private channel between Alice and Bob. By exchanging messages through
this channel, Alice and Bob attempt to jointlyk-anonymize the table. We say a protocol implements a
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k-anonymization functionK() if for all T (A), T (B), Alice and Bob outputK(T (A), T (B)) at the end of
the protocol.

Now we rigorously define our privacy requirement by adaptingthe standard definition of privacy in
thesemi-honest modelof cryptographic protocols to our setting. In the semi-honest model, each involved
party is assumed to follow the protocol but may attempt to derive extra information to violate privacy of
the other party. This model has been extensively studied [16] and widely applied to privacy problems
with large-size data [21, 17, 36]. Although the semi-honestmodel is a strong restriction on participants’
behavior, there are at least two reasons for studying our problem in this model. First, deviating from
the protocol requires a considerable amount of effort (to hack the computer program) and such effort
is often illegal. Second, it has been shown that any protocolprivate in the semi-honest model can be
“translated” to one secure in the fully malicious model, where the participants may deviate arbitrarily
from the protocol [16].

Intuitively, our privacy requirement states that the view of the protocol seen by each party can be
simulated by an algorithm that has no knowledge of the suppressed entries in the other party’s data.
To formalize this requirement, we must first define theview of each party: during an execution of the
protocol, a party’s view consists of this party’s data, all the coin flips of this party, and all the messages
this party receives. We denote byviewA(T (A), T (B)) (viewB(T (A), T (B)), resp.) the view of Alice (Bob,
resp.) during an execution with the table(T (A), T (B)).

Definition 3.1. (Unconditional Privacy) SupposeK() is a k-anonymization function. A distributedk-
anonymization protocol that implementsK() is unconditionally privateif there exist two families of

(randomized) algorithms{M (A)
N }, {M (B)

N } such that, for anyN and any(T (A), T (B)) of sizeN ,

(M
(A)
N (T (A),K(T (A), T (B))), T (A), T (B))

≡ (viewA(T (A), T (B)), T (A), T (B)),

(M
(B)
N (T (B),K(T (A), T (B))), T (A), T (B))

≡ (viewB(T (A), T (B)), T (A), T (B)),

where≡ denotes equality of distributions (i.e., the random variable on the left side should be identi-
cally distributed as the random variable on the right side).The algorithmsM (A)

N andM
(B)
N are called

simulators(for Alice and Bob, respectively).

Note that, in the above definition, there is no restriction onthe running time of simulators; we implic-
itly assume that they can have unbounded computational power. Also note that the joint distribution of
each simulator’s output and original data must be identicalto the joint distribution of the corresponding
view and the original data. Privacy formalized in this way isthe strongest possible, guaranteeing no extra
information is revealed even to computationally unboundedadversaries. Thus we call it unconditional
privacy.

Unconditional privacy is good, but not always necessary. Sometimes it suffices to guarantee privacy
against polynomial-time adversaries. Consequently, we give a slightly relaxed definition of privacy as
follows.

Definition 3.2. (Polynomial-time Privacy) SupposeK() is a k-anonymization function. A distributed
k-anonymization protocol that implementsK() is private against polynomial-time adversariesif there
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exist probabilistic polynomial-time algorithmsM (A), M (B) such that, for any(T (A), T (B)),

{M (A)(T (A),K(T (A), T (B)))}(T (A),T (B))

c

≡ {viewA(T (A), T (B))}(T (A),T (B)),

{M (B)(T (B),K(T (A), T (B)))}(T (A) ,T (B))

c

≡ {viewB(T (A), T (B))}(T (A),T (B)),

where
c

≡ denotescomputational indistinguishabilityof probability emsembles.1 The algorithmsM (A)

andM (B) are calledsimulators(for Alice and Bob, respectively).

4. Impossibility of Unconditional Privacy

In this section, we show that it is impossible to design unconditionally private protocols for a very broad
class ofk-anonymization functions, namelynormal k-anonymization functions. To rigorously define
normalk-anonymization functions, we first present a formal definition of suppression.

Definition 4.1. A k-anonymization functionK() isby suppressionif for all tableT , all i ∈ [1, NA+NB],
all j ∈ [1,m], eitherK(T )i,j = Ti,j orK(T )i,j = ⋆, where⋆ is a symbol not belonging to the domain of
any attribute.

Normal k-anonymization functions are a class ofk-anonymization functions by suppression; one
important property of these functions is that they “fairly treat” the symbols of each attribute. That is to
say, if we permute the symbols in any attribute’s domain, thebehavior of thek-anonymization function
should not be affected. For example, consider two tablesT andS: T1,1 = 0, S1,1 = 1; for all i 6= 1,
Ti,1 = 1, Si,1 = 2; for all j 6= 1, Ti,j = Si,j. Clearly, if we permute the symbols in the domain of
attributea1, mapping symbol0 to 1 and symbol1 to 2, then the tableT becomes the tableS. We hope
that the small difference betweenT andS will not affect the behavior of thek-anonymization function.
More precisely, we hope thatK(T ) also becomesK(S) if we permute the symbols in the domain of
attributea1 as described above.

For simplicity, whenσ is a permutation on the domain of an attribute, we useσ(T ) to denote the
table obtained by applyingσ to that attribute ofT .

Definition 4.2. A k-anonymization functionK() is insensitive to permutations of symbolsif for all j ∈
[1,m], all permutationσ on the domain ofaj,

K(σ(T (A), T (B))) = σ(K(T (A), T (B))).

Now we can formally define normalk-anonymization functions as follows.

Definition 4.3. A k-anonymization function isnormal if the following three conditions are satisfied:

• It is ak-anonymization function by suppression;

1Readers can refer to, e.g., [16], for the definitions of probability ensembles and computational indistinguishability.
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• It is insensitive to permutations of symbols;

• If a table is alreadyk-anonymous, then the function maps the table to itself.

As far as we know, thek-anonymization functions implemented by many existingk-anonymization
algorithms (e.g., those in [26, 23, 4]) are normal. Consequently, it is natural for us to focus on normal
k-anonymization functions.

Theorem 4.1. Suppose thatK() is a normalk-anonymization function, and that at least one of the at-
tributes has a domain of size at least4. If NA + NB ≥ 2k, then there does not exist any unconditionally
private protocol that implementsK().

Proof:
Without loss of generality, we assume thata1 is a domain of size at least4, that the domain ofa1

contains symbols0, 1, 2, and3, and that the domains of all other attributes contain symbol0. We define
two NA × (m + m′) tablesT (A), S(A), and twoNB × (m + m′) tableT (B), S(B) as follows:

T
(A)
i,j =

{

1 if i = 1 ∧ j = 1

0 otherwise.

S
(A)
i,j =

{

3 if i = 1 ∧ j = 1

0 otherwise.

T
(B)
i,j =

{

2 if i ∈ [1, k − 1] ∧ j = 1

0 otherwise.

S
(B)
i,j =

{

3 if i ∈ [1, k − 1] ∧ j = 1

0 otherwise.

Furthermore, we defineσ as the permutation on the domain ofa1 such that the two symbols1 and3
are exchanged, but all other symbols remain unchanged. Similarly, we defineπ as the permutation on the
domain ofa1 such that the two symbols2 and3 are exchanged, but all other symbols remain unchanged.
Then clearly we have

(S(A), T (B)) = σ(T (A), T (B)); (1)

(T (A), S(B)) = π(T (A), T (B)). (2)

SinceK() is normal, we should have

K(σ(T (A), T (B))) = σ(K(T (A), T (B))); (3)

K(π(T (A), T (B))) = π(K(T (A), T (B))). (4)
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Plugging (1) into (3) and (2) into (4), we obtain

K(S(A), T (B)) = σ(K(T (A), T (B))); (5)

K(T (A), S(B)) = π(K(T (A), T (B))). (6)

Note that the only entry of1 in (T (A), T (B)) must have been suppressed inK(T (A), T (B)), be-
cause otherwiseK(T (A), T (B)) cannot bek-anonymous. Therefore,K(T (A), T (B)) does not contain the
symbol 1. Similarly, we can show thatK(T (A), T (B)) does not contain the symbol2. Furthermore,
K(T (A), T (B)) does not contain the symbol3 since(T (A), T (B)) does not have this symbol. Hence, we
obtain

K(T (A), T (B)) = σ(K(T (A), T (B))); (7)

K(T (A), T (B)) = π(K(T (A), T (B))). (8)

Combining (5), (6), (7), and (8), we have

K(T (A), T (B)) = K(S(A), T (B)) = K(T (A), S(B)). (9)

Recall thatK() maps allk-anonymous tables to themselves. Since(S(A), S(B)) is alreadyk-anonymous,
we haveK(S(A), S(B)) = (S(A), S(B)), which implies

K(S(A), S(B)) 6= K(T (A), T (B)), (10)

because there exists symbol⋆ in K(T (A), T (B)).
Next, we show by contradiction that there does not exist any unconditionally private protocol that

implementsK(). Suppose that there exists such an unconditionally privateprotocol. Then we use the
techniques given by Kushilevitz [20] to show that (9) and (10) lead to a contradiction.2

Denote byM(T (A), T (B)) the messages sent in the protocol when the data is(T (A), T (B)). Since

the protocol is unconditionally private, there exists an algorithmM
(B)
N such that

(M
(B)
N (T (B),K(T (A), T (B))), T (A), T (B))

≡ (viewB(T (A), T (B)), T (A), T (B)),

which implies

M
(B)
N (T (B),K(T (A), T (B))) ≡ viewB(T (A), T (B)).

Note thatM(T (A), T (B)) is a part ofviewB(T (A), T (B)). If we denote the rest ofviewB(T (A), T (B)) by
view

′
B(T (A), T (B)), then we can rewrite the above equation as

M
(B)
N (T (B),K(T (A), T (B)))

≡ (M(T (A), T (B)), view′
B(T (A), T (B))).

2In [20], it has been shown that a function satisfying both (9)and (10) cannot have an unconditionally private protocol. However,
since our definition of unconditional privacy is formalizedin a slightly different way, for completeness we still include a proof
based on their techniques.
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Similarly, we can obtain

M
(B)
N (T (B),K(S(A), T (B)))

≡ (M(S(A), T (B)), view′
B(S(A), T (B))).

Combining (9) with the above two equations, we have

M(T (A), T (B)) ≡ M(S(A), T (B)). (11)

Similarly, we can also obtain
M(T (A), T (B)) ≡ M(T (A), S(B)). (12)

Now we consider a specific message sequenceM0 such that

Pr[M(S(A), T (B)) = M0] > 0. (13)

Then by (11) and (12), we know

Pr[M(T (A), S(B)) = M0] > 0. (14)

Let the number of messages inM0 beL. Suppose thatM0 = (M
(1)
0 , . . . ,M

(L)
0 ). We denote byPr[M

(ℓ)
0

|T (A), (M
(1)
0 , . . . ,M (ℓ−1)

0 )] (resp.,Pr[M
(ℓ)
0 |T (B), (M

(1)
0 , . . . ,M (ℓ−1)

0 )]) the probability that Alice (resp.,

Bob) sends messageM (ℓ)
0 in the ℓth round when her data isT (A) (resp., his data isT (B)) and the first

ℓ − 1 rounds of messages are(M
(1)
0 , . . . ,M

(ℓ−1)
0 ). Thus (13) can be rewritten as

ℓ is odd
∏

1≤ℓ≤L

Pr[M
(ℓ)
0 |S(A), (M

(1)
0 , . . . ,M

(ℓ−1)
0 )]

×
ℓ is even

∏

1≤ℓ≤L

Pr[M
(ℓ)
0 |T (B), (M

(1)
0 , . . . ,M

(ℓ−1)
0 )] > 0,

which immediately implies

ℓ is odd
∏

1≤ℓ≤L

Pr[M
(ℓ)
0 |S(A), (M

(1)
0 , . . . ,M

(ℓ−1)
0 )] > 0. (15)

Similarly, we can obtain from (14) that

ℓ is even
∏

1≤ℓ≤L

Pr[M
(ℓ)
0 |S(B), (M

(1)
0 , . . . ,M

(ℓ−1)
0 )] > 0. (16)

Combining the above two equations, we have

ℓ is odd
∏

1≤ℓ≤L

Pr[M
(ℓ)
0 |S(A), (M

(1)
0 , . . . ,M

(ℓ−1)
0 )]

×
ℓ is even

∏

1≤ℓ≤L

Pr[M
(ℓ)
0 |S(B), (M

(1)
0 , . . . ,M

(ℓ−1)
0 )] > 0,
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which is equivalent to

Pr[M(S(A), S(B)) = M0] > 0. (17)

Note that Alice’s output is determined by her data and the messages in the protocol. By (13) we know
that Alice outputsK(S(A), T (B)) when her data isS(A) and the messages areM0. By (17) we know that
Alice has the same output with a positive probability when Alice has dataS(A) and Bob has dataS(B).
Since in this case Alice’s output should always beK(S(A), S(B)), we obtain

K(S(A), T (B)) = K(S(A), S(B)).

However, (9) and (10) imply

K(S(A), T (B)) 6= K(S(A), S(B)).

Contradiction. ⊓⊔

5. Efficient ID-based Cryptographic Solution

Since it is impossible to design unconditionally private protocols that implement normalk-anonymization
functions, a natural question is whether it is possible to design protocols private against polynomial-time
adversaries for these functions. In this section, we present a protocol that implements a normalk-
anonymization function and guarantees privacy against polynomial-time adversaries. An advantage of
our protocol is that it is ID-based, which means the involvedparties do not need to have a priori knowl-
edge of each other’s public key. Before we go into the detailsof our protocol design, we first explain
what is ID-based cryptography, why it is useful, and what kind of ID-based encryption scheme we need
in designing our protocol.

5.1. ID-based Cryptography and Waters Encryption

ID-based cryptography was first proposed by Shamir [27]; after Boneh and Franklin’s seminal work [9],
a lot of practical ID-based crypto-systems have been designed, for example, [8, 35]. Using an ID-based
crypto-system, one can encrypt a message for any receiver without a priori knowledge of the receiver’s
public key. As long as the receiver’s ID is known, the encryption can be easily performed. The receiver
obtains a private key from the Private Key Generator (PKG); using this private key she can decrypt any
message encrypted under her ID.

ID-based cryptography gives us a lot of convenience and flexibility. In particular, it makes key
renewal easier because updating public key information is not necessary. For instance, one can encrypt
messages under the ID “department secretary 11/2005” in November 2005, and then encrypt messages
under the ID “department secretary 12/2005” in December 2005. This allows the department secretary
to renew her private key every month; it is no longer necessary for the secretary to make a monthly
announcement of her new public key .

In our problem of distributedk-anonymization, the involved parties are owners of large-size data.
Consequently, it is essential for them to renew keys frequently. This is one of the reasons we choose to
design our protocol using ID-based cryptography.
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5.1.1. Waters Encryption

Our protocol is based on a specific ID-based encryption scheme, Waters encryption scheme [35], al-
though it can be replaced by other ID-based encryption schemes with similar properties (being homo-
morphic and having rerandomization operations, which we shall explain shortly). To be concrete, we
first give a brief review of Waters encryption scheme, which uses bilinear maps.

Definition 5.1. (Admissible Bilinear Map) A map̂e : G1 × G1 → G2 (whereG1, G2 are groups of the
same prime order) is anadmissible bilinear mapif, for a generatorg of groupG1,

• for all a, b, ê(ga, gb) = ê(g, g)ab ;

• ê(g, g) 6= 1.

Note that admissible bilinear maps do exist: Boneh and Franklin [9] constructed such maps using
Weil Pairing.

Now suppose thats is a security parameter and thatq is ans-bit prime. LetG1 andG2 be two groups
of prime orderq, andê : G1 × G1 → G2 be an admissible bilinear map with generatorg of groupG1.
Assume thatn is an independent parameter and that IDs aren-bit strings.

Initialization For α, β picked uniformly and independently3 from [0, q], the PKG setsg1 = gα,
g2 = gβ . The PKG also chooses a random valueu′ ∈ G1, and a randomn-dimensional vector
U = (u1, . . . , un), where eachui is chosen at random fromG1. The parametersg, g1, g2, u′ andU

are made public.

Private Key Generation For an IDv, the private key is

dv = (gαβ(u′
∏

vi=1

ui)
r, gr),

wherevi is theith bit of v andr ∈ [0, q − 1] is picked at random.

Encryption An encryption of plaintextp under IDv is

C = Ev(p, t) = (p · ê(g1, g2)
t, gt, (u′

∏

vi=1

ui)
t),

wheret ∈ [0, q − 1] is picked at random.

Decryption Suppose thatC = (C1, C2, C3) is a valid ciphertext under IDv. ThenC can be decrypted
using the private keydv = (d1, d2):

p = Ddv
(C) = C1

ê(d2, C3)

ê(d1, C2)
.

3In this paper, whenever we choose a random number, we always choose it uniformly and independently, unless otherwise
specified.
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Homomorphic Property The Waters ID-based encryption scheme ishomomorphic: If we define the
multiplication of two tuples as the multiplication of the corresponding elements in each dimension, then
we have

Ev(p1p2, t1 + t2) = Ev(p1, t1)Ev(p2, t2).

Rerandomization Operation A ciphertextC = (C1, C2, C3) can bererandomizedusing only the
public parameters:

C ′ = (C1ê(g1, g2)
t′ , C2g

t′ , C3(u
′
∏

vi=1

ui)
t′).

It can be easily verified that the resultC ′ is another encryption of the same cleartext:

Ddv
(C ′) = Ddv

(C).

5.2. Solution Design

In this section, we briefly present the intuitive ideas we useto design our protocol. We leave a complete
and detailed description of our protocol to Section 5.3.

5.2.1. Suppressing Less Frequent Quasi-identifiers

The first idea of our protocol design is to decide whether eachquasi-identifier appears for at leastk times
in the table. If a quasi-identifier appears for fewer thank times, then we suppress all occurrences of this
quasi-identifier.

Comparing Frequency with Threshold It is easy to decide whether agivenquasi-identifier appears
for at leastk times in the table. Suppose that this quasi-identifier appears fory times in Alice’s data. Then
Alice prepares a list ofk ciphertextsunder her own IDto representy: If y < k, the firsty ciphertexts
are encryptions of1 and the remaining ciphertexts are encryptions of random numbers. Ify ≥ k, all
the k ciphertexts are encryptions of1. Alice sends this list of ciphertexts to Bob, who clearly cannot
decrypt them. However, Bob can obtain a ciphertext representing whether the quasi-identifier appears
for at leastk times in the table: Assume that the quasi-identifier appearsfor y′ times in Bob’s data. If
y′ < k, Bob chooses the(k − y′)th ciphertext to represent the result. Note that (with high probability)
this is an encryption of1 if and only if k−y′ ≤ y, which is equivalent to that the quasi-identifier appears
for at leastk times in the table. So when Bob sends this ciphertext back to Alice, all Alice needs to do
is to decrypt the ciphertext and compare the cleartext with1. If y′ ≥ k, Bob already knows that the
quasi-identifier appears for at leastk times in the table. So he encrypts1 under Alice’s ID and sends the
ciphertext to Alice.

Multiple Quasi-identifiers Nevertheless, in our problem there are many quasi-identifiers; so we need
to extend the above approach to multiple quasi-identifiers.Here the major technical challenge is that,
when Alice sends manyk-ciphertext lists to Bob, Bob does not know which list corresponds to which
quasi-identifier. Note that Alice cannot tell Bob the quasi-identifiers corresponding to these ciphertext
lists, because otherwise Bob would learn the set of quasi-identifiers appeared in Alice’s data.
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To solve this problem, for each list of ciphertexts sent by Alice, Bob associates the list withevery
quasi-identifier appeared in his data and applies the above described approach. Suppose that this list of
ciphertexts actually corresponds to quasi-identifierxi, which appearsyi times in Alice’s data. Then for
each quasi-identifierx′

j, which appearsy′j times in Bob’s data, Bob uses the approach we just described
above to obtain a ciphertext that represents whetheryi + y′j ≥ k. Then this ciphertext is an encryption of
1 if yi +y′j ≥ k, and an encryption of random cleartext ifyi +y′j < k. Since we are only interested in the
casexi = x′

j (i.e., the case Bob’s quasi-identifier matches Alice’s listof ciphertext), we want to multiply
this ciphertext by an encryption of random cleartext whenxi 6= x′

j . To achieve this goal, we note that,
for a random exponentθi,j, if xi 6= x′

j , ( xi

x′

j
)θi,j is a random element; ifxi = x′

j, ( xi

x′

j
)θi,j = 1. Thus it

suffices for Bob to multiply the above ciphertext by an encryption of ( xi

x′

j
)θi,j . Now suppose that each

ciphertext list is accompanied by an encryption of the corresponding quasi-identifierxi under Alice’s ID.
Then computing the encryption of( xi

x′

j
)θi,j is easy because Bob can use the homomorphic property of the

encryption scheme.

Hiding Numbers of Quasi-identifiers A subtle issue is how many lists of ciphertexts Alice should
send to Bob and how many quasi-identifiers Bob should associate each list with. These cannot be the
numbers of different quasi-identifiers appeared in Alice’sand Bob’s data, because we do not want them
to reveal the numbers of different quasi-identifiers to eachother. Our solution is to use a public upper
bound of these numbers. To get a sufficient number of ciphertext lists, Alice should add “dumb” lists
with xis that do not match any legal quasi-identifiers. Similarly, Bob should add “dumb”x′

js.

5.2.2. Testingk-Anonymity

So far we have ignored a special case in our design—the case that fewer thank (but more than0) rows
in the table have suppressed quasi-identifiers. In this case, if we do not suppress more quasi-identifiers,
then the table cannot bek-anonymous, although each unsuppressed quasi-identifier in the table appears
for at leastk times.

To deal with this special case, before Alice interacts with Bob to decide whether each quasi-identifier
appears for at leastk times in the table, she choosesσ—a set ofk rows, and suppresses the quasi-identifier
entries inσ. Nevertheless, this leads to another problem: We have to make sure our protocol implements
a normal k-anonymization function; so when the original table is already k-anonymous, Alice cannot
suppress the quasi-identifier entries inσ.

We solve the above problem by adding a phase ofk-anonymity test to the beginning of our protocol.
If Alice and Bob find that the table is alreadyk-anonymous, they send their data to each other and output
the table. Otherwise, they go into the second phase, in whichAlice suppresses the quasi-identifiers in
σ and then interacts with Bob to decide whether each quasi-identifier appears for at leastk times in the
table.

Basic Techniques ofk-Anonymity Test In this first phase, Alice divides the quasi-identifiers in her
data into two sets:QA,0, the set of quasi-identifiers appeared for at leastk times in her data, andQA,1,
the set of quasi-identifiers appeared for at mostk − 1 times (and at least one time) in her data. Similarly,
Bob divides the quasi-identifiers in his data intoQB,0 andQB,1. It is not hard to see that the table is
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k-anonymous if and only ifQA,1 − QB,0 = QB,1 − QA,0 and every quasi-identifier inQA,1 − QB,0

appears for at leastk times in the entire table.
Let’s temporarily assume that disclosingQA,0 andQB,0 does not violate privacy. Then Alice sends

QA,0 to Bob and Bob sendsQB,0 to Alice, so that Alice can computeQA,1−QB,0 and Bob can compute
QB,1 − QA,0. Now both Alice and Bob permute the quasi-identifiers in a specific order (e.g., in the
increasing order of binary representations). So, the tableis alreadyk-anonymous if and only if for alli,
theith quasi-identifier inQA,1 −QB,0 is equal to theith quasi-identifier inQB,1 −QA,0 and the number
of this quasi-identifier’s occurrences in the entire table is at leastk.

For eachi, using the technique we have described, it is easy to let Bob have a ciphertext (which
is encrypted under Alice’s ID) representing whether the quasi-identifier appears for at leastk times in
the entire table. To ensure that the two quasi-identifiers are equal, we can multiply this ciphertext by
an encryption of a random power of the quotient of the two quasi-identifiers (which is obtained using
the homomorphic property). The result is an encryption of1 if the two quasi-identifiers are equal and
the number of occurrences is at leastk; it is an encryption of random cleartext otherwise. Given the
ciphertext we obtain for eachi, we can derive a single ciphertext that represents whether the table is
k-anonymous: We simply take the product of the ciphertexts for all i. When this single ciphertext is sent
back to Alice, Alice can learn whether the table is alreadyk-anonymous.

In the above procedure ofk-anonymity test, since we do not want to disclose the numbersof quasi-
identifiers inQA,1 − QB,0 andQB,1 − QA,0, we again need to add “dumb” quasi-identifiers to reach a
public upper bound of the quasi-identifier numbers.

Protecting QA,0 Now we go back to the assumption we have made: disclosingQA,0 andQB,0 does
not violate privacy. Is this always true? Not necessary.QB,0 can be derived from the final output of
our protocol because, after thek-anonymization, all quasi-identifiers inQB,0 still appear for at leastk
times in Bob’s part of the data. Therefore, we can safely say that disclosingQB,0 to Alice does not
violate privacy. However, we do not have a similar argument for disclosingQA,0 to Bob. Recall that we
suppress the quasi-identifier entries inσ—this may affect some quasi-identifiers inQA,0, bringing down
the numbers of their occurrences in Alice’s data to less thank.

To minimize this problem, we chooseσ to be thek rows in Alice’s data with the least frequently
appeared quasi-identifiers. Then clearly, at most one quasi-identifier inQA,0 can be affected. Suppose
that a quasi-identifierx⋆ ∈ QA,0 is affected. In this case, disclosingQA,0 to Bob violates privacy, but
disclosingQ′

A,0 = QA,0 − {x⋆} does not. So at the beginning of ourk-anonymity test, Alice sends
Q′

A,0, not QA,0, to Bob. In this case, it is not hard to see that the table isk-anonymous if and only if
(a) for all i, the ith quasi-identifier inQA,1 − QB,0 is equal to theith quasi-identifier inQB,1 − Q′

A,0

and the number of this quasi-identifier’s occurrences in theentire table is at leastk; or (b) for all i, the
ith quasi-identifier in(QA,1 − QB,0) ∪ {x⋆} is equal to theith quasi-identifier inQB,1 − Q′

A,0 and the
number of this quasi-identifier’s occurrences in the entiretable is at leastk.

Using the technique we have described, Bob can obtain two ciphertexts (both of which encrypted
under Alice’s ID), one representing whether (a) holds, and the other representing whether (b) holds.
Note that (a) and (b) cannot hold simultaneously. Therefore, these two ciphertexts are one encryption
of 1 and one encryption of random cleartext if the table isk-anonymous; they are both encryptions of
random cleartexts otherwise. Bob switches the order of the two ciphertexts with probability12 , so that
Alice won’t know learn which ciphertext corresponds to which condition. Then Bob sends them to Alice,
who decrypts them to get the result ofk-anonymity test.
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5.2.3. Ensuring Protocol Correctness

Finally, we notice a small probability of failure using the techniques described above: We always use a
ciphertext of1 to represent “yes” and a ciphertext of random cleartext to represent “no.” Since the random
cleartext can be equal to1 with a negligible probability, the output of our protocol can be wrong with a
negligible probability. Nevertheless, having a wrong output is undesirable, even if it only happens with a
negligible probability. Consequently, we add a step to the end of the protocol to ensure the correctness:
The two parties check whether the table they obtained isk-anonymous. If it is, they output the table;
otherwise, they send their original data to each other and perform k-anonymization. Note that sending
original data to each other violates privacy. However, thisonly happens with a negligible probability,
and thus is not a problem when we consider polynomial-time adversaries.

5.3. Protocol

Below is a detailed description of our protocol.

Phase 1 Alice divides the quasi-identifiers in her data into two sets: QA,0, the set of quasi-identifiers
appeared for at leastk times in her data, andQA,1, the set of quasi-identifiers appeared for at mostk − 1
times but at least one time in her data. Letσ be thek rows in Alice’s data with the least frequently
appeared quasi-identifiers. LetQ′

A,0 be the set of quasi-identfiers that appear for at leastk times in

T (A) − σ. Alice sendsQ′
A,0 to Bob.

Bob divides the quasi-identifiers in his data into two sets:QB,0, the set of quasi-identifiers appeared
for at leastk times in his data, andQB,1, the set of quasi-identifiers appeared for at mostk − 1 times but
at least one time in his data. Bob sendsQB,0 to Alice.

Alice permutes the quasi-identifiers inQA,1 − QB,0 in the increasing order of their binary represen-
tations. Suppose that these quasi-identifiers arex1, . . . , xwA

, in the above mentioned order. For eachxi

(1 ≤ i ≤ wA), let yi be the number of rows in Alice’s data with quasi-identifierxi. Then, letΛ be an ele-
ment ofG1 that does not correspond to any valid quasi-identifier. For eachi ∈ [wA +1,max{NA, NB}],
Alice setsxi = Λ andyi = k. For eachi ∈ [1,max{NA, NB}], Alice encryptsxi under her own ID:

X
(0)
i = EA(xi, tA,i,0),

wheretA,i,0 is picked uniformly and independently from[0, q − 1]. For eachi ∈ [1,max{NA, NB}],
eachj ∈ [1, k], Alice defines

zi,j =

{

1 if j ≤ yi

random element ofG1 otherwise.

Alice encrypts eachzi,j under her own ID:

Z
(0)
i,j = EA(zi,j , tA,i,j),

wheretA,i,j is picked uniformly and independently from[0, q − 1].

If Q′
A,0 = QA,0, Alice does the follows: For eachi ∈ [1,max{NA, NB}], Alice setsX

(1)
i to a

random encryption of random cleartext; for eachi ∈ [1,max{NA, NB}], eachj ∈ [1, k], Alice setsZ(1)
i,j

to a random encryption of random cleartext.
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If Q′
A,0 6= QA,0, Alice does the follows: Let the only quasi-identifier inQA,0 −Q′

A,0 bex⋆. Suppose
that the binary representation ofx⋆ is greater than that ofxI but smaller than that ofxI+1. (If the binary
representation ofx⋆ is greater than that ofxwA

, then Alice definesI = wA; if the binary representation

of x⋆ is smaller than that ofx1, then Alice definesI = 0.) For eachi ∈ [1, I], Alice setsX(1)
i to a

rerandomization ofX(0)
i ; For eachi ∈ [1, I] and eachj ∈ [1, k], Alice setsZ(1)

i,j to a rerandomization of

Z
(0)
i,j . Alice setsX(1)

I+1 to a random encryption ofx⋆. Lety⋆ be the number of timesx⋆ appears in Alice’s

data. For eachj ∈ [1, y⋆], Alice setsZ(1)
I+1,j to a random encryption of1; for eachj ∈ [y⋆ + 1, k], Alice

setsZ(1)
I+1,j to a random encryption of random cleartext. For eachi ∈ [I + 2,max{NA, NB}], Alice sets

X
(1)
i to a rerandomization ofX(0)

i−1; For eachi ∈ [I + 2,max{NA, NB}] and eachj ∈ [1, k], Alice sets

Z
(1)
i,j to a rerandomization ofZ(0)

i−1,j .

Regardless of whetherQA,0 = Q′
A,0 or QA,0 6= Q′

A,0, Alice sends((X(0)
1 , (Z

(0)
1,1 , . . . , Z

(0)
1,k)), . . . ,

(X
(0)
max{NA,NB}, (Z

(0)
max{NA,NB},1, . . . , Z

(0)
max{NA,NB},k))) and ((X

(1)
1 , (Z

(1)
1,1 , . . ., Z

(1)
1,k)), . . .,

(X
(1)
max{NA,NB}, (Z

(1)
max{NA,NB},1, . . . ,Z(1)

max{NA,NB},k))) to Bob.

Bob permutes the quasi-identifiers inQB,1 − Q′
A,0 in the increasing order of their binary repre-

sentations. Suppose that these quasi-identifiers arex′
1, . . . , x

′
wB

, in the above mentioned order. For
eachx′

i (1 ≤ i ≤ wB), let y′i be the number of rows in Bob’s data with quasi-identifierx′
i. For each

i ∈ [wB + 1,max{NA, NB}], Bob setsx′
i = Λ andy′i = k. For eachi ∈ [1,max{NA, NB}], Bob sets

Z ′
i
(0)

=

{

Z
(0)
i,k−y′

i
if y′i < k

EA(1, 0) if y′i ≥ k;

and

Z ′
i
(1)

=

{

Z
(1)
i,k−y′

i
if y′i < k

EA(1, 0) if y′i ≥ k.

Then Bob computes

R0 =

max{NA,NB}
∏

i=1

Z ′
i
(0)

(
X

(0)
i

EA(x′
i, 0)

)ri,0 ,

and

R1 =

max{NA,NB}
∏

i=1

Z ′
i
(1)

(
X

(1)
i

EA(x′
i, 0)

)ri,1 ,

where eachri,j is picked independently and uniformly from[0, q − 1]. Bob rerandomizesR0, R1 and
with probability 1

2 switches their order. Let the result of the above operationsbeR′
0, R′

1. Bob sendsR′
0,

R′
1 to Alice.

Alice decryptsR′
0, R′

1. If one of the plaintexts obtained is1, then Alice tells Bob that the original
table has beenk-anonymous and sends Bob her own dataT (A). In this case, Bob sends his own data
T (B) back to Alice and then they output the entire table. If both plaintexts are not equal to1, then the
protocol goes into Phase 2.



S. Zhong / On Distributed k-Anonymization 427

Phase 2 Recall thatσ is thek rows in Alice’s data with the least frequently appeared quasi-identifiers.
Alice suppresses the quasi-identifiers in thesek rows. Then she computes((X1, (Z1,1, . . . , Z1,k)),
. . . ,(Xmax{NA,NB}, (Zmax{NA,NB},1, . . . ,Zmax{NA,NB},k))) from her current data just as she computed

((X
(0)
1 , (Z(0)

1,1 , . . . ,Z(0)
1,k)), . . . ,(X(0)

max{NA,NB}, (Z
(0)
max{NA,NB},1, . . . ,Z(0)

max{NA,NB},k))) from her original

data. She sends((X1, (Z1,1, . . . ,Z1,k)), . . . , (Xmax{NA,NB}, (Zmax{NA,NB},1, . . . ,Zmax{NA,NB},k)))
to Bob.

Let vB be the total number of different quasi-identifiers in Bob’s data. Suppose that the quasi-
identifiers appeared in Bob’s data arex′′

1, . . . ,x′′
vB

. For eachx′′
i (1 ≤ i ≤ vB), let y′′i be the number of

rows in Bob’s data with quasi-identifierx′′
i . For eachi ∈ [vB + 1,max{NA, NB}], Bob setsx′′

i = Λ′

andy′′i = k, whereΛ′ 6= Λ is another element ofG1 that does not correspond to any quasi-identifier. For
eachi ∈ [1,max{NA, NB}] and eachj ∈ [1,max{NA, NB}], Bob computes

γi,j =







Zi,k−y′′

j
( Xi

EA(x′′

j ,0)
)θi,j if y′′j < k

( Xi

EA(x′′

j ,0))
θi,j if y′′j ≥ k,

where eachθi,j is picked from[0, q − 1] independently and uniformly. For eachi ∈ [1,max{NA, NB}],
Bob repermutes the list(γi,1, . . . , γi,max{NA,NB}) randomly; let the result be(γ′

i,1, . . . , γ
′
i,max{NA,NB}).

Bob sends(γ′
i,j)i∈[1,max{NA,NB}],j∈[1,max{NA,NB}] to Alice.

For eachi that corresponds to a quasi-identifier in her current data, Alice decrypts(γ′
i,1, . . .,

γ′
i,max{NA,NB}) to see whether there is a1. If not, Alice suppresses all occurrences of this quasi-identifier.

After suppressing all necessary quasi-identifiers, Alice sends Bob a list of quasi-identifiers that remain
in her current data.

For each quasi-identifier in Bob’s data, if it appears for at mostk − 1 times and it is not in the list
sent by Alice, then Bob suppresses all its occurrences.

Bob and Alice send their current data to each other and check whether the current table isk-
anonymous. If it is, then they output the entire current table. Otherwise, they send their original data to
each other and run a goodk-anonymization algorithm on the entire original table; finally they output the
result of thek-anonymization algorithm.

5.4. Protocol Analysis

Theorem 5.1. The protocol presented in Section 5.3 implements a normalk-anonymization function.

The proof of Theorem 5.1 is straightforward; so we do not present it here.

Theorem 5.2. The protocol presented in Section 5.3 is private against polynomial-time adversaries.

Proof:
We construct the two simulators as follows. (All encryptingoperations below are performed under the
ID of Alice.)

M (A) simulates Alice’s dataT (A) and coin flips usingT (A) itself (which is one ofM (A)’s input) and
coin flips of the same distributions.M (A) simulates the first-round message Alice received using the set
of quasi-identifiers appeared for at leastk times in the lastNB rows ofK(T (A), T (B)). If K(T (A), T (B))
does not have any entry of⋆, M (A) simulates the second-round message (R′

1, R′
2) Alice received using a
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random encryption of1 and a random encryption of random cleartext, in a random order; M (A) simulates
the third-round message (T (B)) Alice received using the lastNB rows ofK(T (A), T (B)); thenM (A)

finishes the simulation in this case. Otherwise,M (A) simulates the second-round message Alice received
using two random encryptions of random cleartexts and proceeds to the simulation of the second phase.

At the beginning of second phase,M (A) takesT (A) and suppresses the quasi-identifiers inσ (the
k rows with the least frequently appeared quasi-identifiers in T (A)); let the result beS(A). Now M (A)

considers each quasi-identifier that appears for at least one time but at mostk − 1 times inS(A), and at
mostk−1 times in the lastNB rows ofK(T (A), T (B)). If this quasi-identifier also appears in the firstNA

rows ofK(T (A), T (B)), M (A) simulates the corresponding(γ′
i,1, . . . , γ

′
i,max{NA,NB}) in the third-round

message usingmax{NA, NB}−1 random encryptions of random cleartexts and a random encryption of
1, in a random order; otherwise,M (A) simulates(γ′

i,1, . . . , γ
′
i,max{NA,NB}) usingmax{NA, NB} random

encryptions of random cleartexts in a random order.M (A) simulates all the remaining parts of the
third-round message Alice received using random encryptions of random cleartexts.M (A) simulates the
fourth-round message Alice received using the lastNB rows inK(T (A), T (B)). M (A) does not simulate
the possible fifth-round message Alice received, because itonly appears with a negligible probability.

M (B) simulates Bob’s dataT (B) and coin flips usingT (B) itself (which is one ofM (B)’s input) and
coin flips of the same distributions.M (B) simulates the first-round message Bob received using the set
of quasi-identifiers appeared for at leastk times in the firstNA rows ofK(T (A), T (B)). M (B) simulates
the second-round message Bob received using2(k + 1)max{NA, NB} random encryptions of random
cleartexts. IfK(T (A), T (B)) does not have any entry of⋆, M (B) simulates the third-round message he
received using “The table has beenk-anonymous” and the firstNA rows inK(T (A), T (B)); thenM (B)

finishes the simulation in this case. Otherwise,M (B) proceeds to the simulation of the second phase.
In the second phase,M (B) simulates the third-round message Bob received using(k + 1)max{NA,

NB} random encryptions of random cleartexts.M (B) simulates the fourth-round message Bob received
using the list of quasi-identifiers in the lastNB rows ofK(T (A), T (B)). M (B) simulates the fifth-round
message Bob received using the firstNA rows inK(T (A), T (B)). M (B) does not simulate the possible
sixth-round message, also because it only appears with a negligible probability.

The computational indistinguishability immediately follows from the security of the encryption
scheme. ⊓⊔

6. Conclusion and Future Work

In this paper, we investigate distributedk-anonymization between two owners of a (horizontally parti-
tioned) distributed database. We show that unconditional privacy cannot be achieved for normalk-anony-
mization functions. We present an efficient ID-based protocol that implements a normalk-anonymization
function and achieves privacy against polynomial-time adversaries.

While our protocol provides very strong privacy protection, we must admit that it isnot optimalin
terms ofk-anonymization. For example, we note that, for each row, ourprotocol either suppresses its en-
tire quasi-identifier, or keeps its quasi-identifier: it never suppresses part of a quasi-identifier. Clearly, our
protocol has suppressed more than necessary to achievek-anonymity. We leave it for future investigation
how to design a privacy-preserving protocol for optimalk-anonymization.

In another aspect, our results can be extended to three or more parties. First, we observe that, given
any multi-party protocol, if we divide the participants into two groups, then we obtain a two-party proto-
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col. Consequently, given the impossibility of unconditional privacy for two parties, in the settings of three
or more parties, there is no unconditionally private protocol that implements normalk-anonymization
functions as well. Second, it is non-trivial to design a multi-party protocol private against polynomial-
time adversaries based on our two-party protocol. However,we expect that the techniques we use in the
design of our two-party protocol will also be useful in the design of multi-party protocols.
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