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Abstract—Smart devices with built-in sensors, computational
capabilities, and network connectivity have become increasingly
pervasive. Crowds of smart devices offer opportunities to collec-
tively sense and perform computing tasks at an unprecedented
scale. This paper presents Crowd-ML, a privacy-preserving
machine learning framework for a crowd of smart devices, which
can solve a wide range of learning problems for crowdsensing
data with differential privacy guarantees. Crowd-ML endows
a crowdsensing system with the ability to learn classifiers or
predictors online from crowdsensing data privately with minimal
computational overhead on devices and servers, suitable for
practical large-scale use of the framework. We analyze the
performance and scalability of Crowd-ML and implement the
system with off-the-shelf smartphones as a proof of concept.
We demonstrate the advantages of Crowd-ML with real and
simulated experiments under various conditions.

I. INTRODUCTION

A. Crowdsensing

Smart devices are increasingly pervasive in daily life.
These devices are characterized by their built-in sensors (e.g.,
accelerometers, cameras, and, microphones), programmable
computation ability, and Internet connectivity via wireless or
cellular networks. These include stationary devices such as
smart thermostats and mobile devices such as smartphones
or in-vehicle systems. More and more devices are also being
interconnected, often referred to as the “Internet of Things.”
Inter-connectivity offers opportunities for crowds of smart
devices to collectively sense and compute at an unprecedented
scale. Various applications of crowdsensing have been pro-
posed, including personal health/fitness monitoring, environ-
mental sensing, and monitoring road/traffic conditions (see
Section II-A), and the list is currently expanding.

Crowdsensing is used primarily for collecting and an-
alyzing aggregate data from a population of participants.
However, more complex and useful tasks can be performed
beyond calculation of aggregate statistics, by using machine
learning algorithms on crowdsensing data. Examples of such
tasks include: learning optimal settings of room temperatures
for smart thermostats; predicting user activity for context-
aware services and physical monitoring; suggesting the best
driving routes; and recognizing audio events from microphone
sensors. Specific algorithms and data types for these tasks are
different, but they can all be trained in standard unsupervised
or supervised learning settings: given sensory features (time,
location, motion, environmental measures, etc.), train an al-
gorithm or model that can accurately predict a variable of

interest (temperature setting, current user activity, amount of
traffic, audio events, etc.). Conventionally, crowdsensing and
machine learning are performed as two separate processes:
devices passively collect and send data to a central location and
analyses or learning procedures are performed at the remote
location. However, current generations of smart devices have
computing capabilities in addition to sensing. In this paper,
we propose to use computing capabilities of smart devices
and integrate sensing and learning processes together into a
crowdsensing system. As we will show, the integration allows
us to design a system with better privacy and scalability.

B. Privacy

Privacy is an important issue for crowdsensing applica-
tions. By assuring participants’ privacy, a crowdsensing system
can appeal to a larger population of potential participants,
which increases the utility of such a system. However, many
crowdsensing systems in the literature do not employ any
privacy-preserving mechanism (see Section II-B), and existing
mechanisms used in crowdsensing (see [1]) are often difficult
to compare qualitatively across different systems or data types.
In the last decade, differential privacy has gained popularity
as a formal quantifiable measure of privacy risk in data
publishing [2]–[4]. Briefly, differential privacy measures how
much the outcome of a procedure changes probabilistically by
the presence or absence of any single subject in the original
data. The measure provides an upper bound on privacy loss
regardless of any prior knowledge an adversary might have.
While differential privacy has been applied in data publishing
and machine learning, (see Section II-B), it has not been
broadly adopted in crowdsensing systems. In this paper, we
integrate differentially private mechanisms into the crowdsens-
ing system as well, which can provide strong protection against
various types of possible attacks (see Section III-C).

C. Proposed work

This paper presents Crowd-ML, a privacy-preserving ma-
chine learning framework for crowdsensing system that con-
sists of a server and smart devices (see Fig. 1). Crowd-ML
is a distributed learning framework that integrates sensing,
learning, and privacy mechanisms together and can build
classifiers or predictors of interest from crowdsensing data
using computing capabilities of devices with formal privacy
guarantees.

Algorithmically, Crowd-ML learns a classifier or predictor
via distributed incremental optimization. Optimal parameters
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Fig. 1: Crowd-ML consists of a server and a number of smart
devices. The system integrates sensing, learning, and privacy
mechanisms together to learn a classifier or predictor from
device-generated data in an online and distributed way with
formal privacy guarantees.

of a classifier or predictor are found by minimizing the risk
function associated with a given task [5] (see Section III-A
for details). Specifically, the framework finds optimal param-
eters by incrementally minimizing the risk function using a
variant of stochastic (sub)gradient descent (SGD) [6]. Unlike
batch learning, SGD requires only the gradient information
to be communicated between devices and a server, which
has two important consequences: 1) computation load can be
distributed among the devices, enhancing scalability of the sys-
tem; 2) private data of the devices need not be communicated
directly, enhancing privacy. By exploiting these two properties,
Crowd-ML efficiently learns a classifier or predictor from a
crowd of devices with a guarantee of ε-differential privacy.
The differential privacy mechanism is applied locally on each
device using Laplace noise for the gradients and exponential
mechanisms for other information (see Section III-C).

We show advantages of Crowd-ML by analyzing its scala-
bility and privacy-performance trade-offs (Section IV), and by
testing the framework with demonstrative tasks implemented
on Android smartphones and in simulated environments under
various conditions (see Section V).

In summary, we make the following contributions:

• We present Crowd-ML, a general framework for ma-
chine learning with smart devices from crowdsensing
data with many potential applications.

• We show differential privacy guarantees of Crowd-
ML that provide a strong privacy mechanism against
various types of attacks in crowdsensing. To the best
of our knowledge, Crowd-ML is the first general
framework that integrates sensing, learning, and dif-
ferentially private mechanisms for crowdsensing.

• We analyze the framework to show that the cost
of privacy preservation can be minimized and that
the computational and communication overheads on
devices are only moderate, allowing a large-scale
deployment of the framework.

• We implement a prototype and evaluate the framework
with a demonstrative task in a real environment as well
as large-scale experiments in a simulated environment.

The remainder of this paper is organized as follows. We
first review related work in Section II. Section III describes
the Crowd-ML framework. Section IV analyzes Crowd-ML
in terms of privacy-performance trade-off, computation, and
communication loads. Section V presents an implementation
of Crowd-ML and experimental evaluations. We discuss re-
maining issues and conclude in Section VI.

II. RELATED WORK

Crowd-ML integrates distributed learning algorithms and
differential privacy mechanisms into a crowdsensing system.
In this section, we review related work in crowdsensing and
learning systems, and privacy-preserving mechanisms.

A. Crowdsensing and learning

There is a vast amount of work in crowdsensing, and we
focus on the systems aspect of previous work with represen-
tative papers (we refer the reader to survey papers [7] and
[1]). Crowdsensing systems aim to achieve mass collection
and mining of environmental and human-centric data such as
social interactions, political issues of interest, exercise patterns,
and people’s impact on the environment [8]. Examples of such
systems include Micro-Blog [9], PoolView [10], BikeNet [11],
and PEIR [12]. Data collected by crowdsensing can also be
used to mine high-level patterns or to predict variables of in-
terest using machine learning. Applications of learning applied
to crowdsensing include learning bus waiting times [13] and
recognizing user activities (see [14] for a review). Jigsaw [15]
and Lifestreams [16] also use pattern recognition in sensed data
from mobile devices. From the systems perspective, these work
use devices to passively sense and send data to a central server
on which analyses take place, which we will refer to as the
centralized approach. In contrast, sensing and learning can be
performed purely inside each device without a server, which
we call the decentralized approach. For example, SoundSense
[17] learns a classifier on a smartphone to recognized various
audio events without communicating with the back-end. Mixed
centralized and decentralized approaches are also used in
[18], [19], where a portion of the computation is performed
offline on a server. CQue [18] provides a query interface
for privacy-aware probabilistic learning of users’ contexts,
and ACE [19] uses static association rules to learn users’
contexts. System-wise, our work differs from these centralized
or decentralized approaches as we use a distributed approach
to perform learning via the devices and the server together,
which improves privacy and scalability of the system. We are
not aware of any other crowdsensing system that takes a similar
approach. Also, the cited papers are oriented towards novel
applications, but our work focuses on a general framework for
learning a wide range of algorithms and applications.

Crowd-ML also builds on recent advances in incremental
distributed learning [20], [21], which show that a near-optimal
convergence rate is achievable despite communication delays.
A privacy-preserving stochastic gradient descent method is
presented briefly in [22]. Unlike the latter, we present a
complete framework for privacy-preserving multi-device learn-
ing with performance analyses and demonstrations in real
environments.
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B. Privacy-preserving mechanisms

Privacy is an important issue in data collection and analy-
sis. In particular, preserving privacy of users’ locations has
been studied by many researchers (see [23] for a survey).
To preserve privacy of general data types formally, several
mechanisms such as k-anonymity [24] and secure multiparty
computation [25] have been proposed for data publishing [26]
and also for participatory sensing [1]. Recently, differential pri-
vacy [2]–[4] has addressed several weaknesses of k-anonymity
[27], and gained popularity as a quantifiable measure of
privacy risk. Differential privacy has been used for a privacy-
preserving data analysis platform [28], for sanitization of
learned model parameters from data [29], and for privacy-
preserving data mining from distributed time-series data [17].
So far, formal and general privacy mechanisms have not been
adopted broadly in crowdsensing. Among the crowdsensing
systems cited in the previous section ( [9]–[13], [15]–[19],
[30], [31]), only [10], [12], [18] provide privacy mechanisms,
of which only [10] addresses the privacy more formally. To our
best knowledge, Crowd-ML is the first framework to provide
formal privacy guarantees in general crowd-based learning
with smart devices.

III. CROWD-ML

In this section, we describe our Crowd-ML framework in
detail: system, algorithms, and privacy mechanisms.

A. System and workflow

The Crowd-ML system consists of a server and multiple
smart devices that are capable of sensory data collection,
numerical computation, and communication over a public
network with the server (see Fig. 1). The goal of Crowd-
ML is to learn a classifier or predictor of interest from
crowdsensing data collectively by multiple devices. A wide-
range of classifiers or predictors can be learned by minimizing
an empirical risk associated with a given task, a common
method in statistical learning [5]. Formally, let x ∈ R

D be a
feature vector from preprocessing sensory input such as audio,
video, accelerometer, etc, and y be a target variable we aim
to predict from x, such as user activity. For regression, y
can be a real number and for classification, y is a discrete
label y ∈ {1, ..., C} with C classes. We define data as N
pairs of (feature vector, target variable) generated i.i.d. from
an unknown distribution by all participating devices up to the
present:

D = {(x1, y1), ..., (xN , yN )}. (1)

Suppose we use a classifier/predictor h(x;w) with a tunable
parameter vector w, and a loss function l(y, h(x;w)) to mea-
sure the performance of the classifier/predictor with respect to
the true target y. A wide range of learning algorithms can be
represented by h and l, e.g., regression, logistic regression, and
Support Vector Machine (see [32] for more examples). If there
are M smart devices, we find the optimal parameters w of the
classifier/predictor by minimizing the empirical risk over all
M devices:

R(w) =
M∑

m=1

1

|Dm|
∑

(x,y)∈Dm

l(h(x;w), y) +
λ

2
‖w‖2, (2)

where Dm is a set of samples generated from device m only,
and λ

2 ‖w‖2 is a regularization term. This risk function (2) can
be minimized by many optimization methods. In this work
we use stochastic (sub)gradient descent (SGD) [33] which is
one of the simplest optimization methods and is also suitable
for large-scale learning [32], [34]. SGD minimizes the risk by
updating w sequentially

w(t+ 1)← ΠW [w(t)− η(t)g(t)] , (3)

where η(t) is the learning rate, and g(t) is the gradient of the
loss function

g = ∇wl(h(x;w), y), (4)

evaluated with the sample (x, y) and the current parameter
w(t). We assume the parameter domain W is a d-dimensional
ball of some large radius R, and the projection is ΠW =
min(1, R/‖w‖)w. By default, we use the learning rate

η(t) =
c√
t
, (5)

where c is a constant hyperparameter. When computing gra-
dients, we use a ‘minibatch’ of b samples to compute the
averaged gradient

g̃ =
1

b

∑
i

∇wl(h(xi;w), yi), (6)

which plays an important role in the performance-privacy
trade-off and the scalability (Section IV). In Crowd-ML, risk
minimization by SGD is performed by distributing the main
workload (=computation of averaged gradients) to M devices.
Note that each device generates data and compute gradients
using its own data. The workflow is described in Fig. 2.

Fig. 2: Crowd-ML workflow. 1. A device preprocesses sensory
data and generates a sample(s). 2. When the number of samples
{(x, y)} exceeds a certain number, the device requests current
model parameters w from the server. 3. The server authenticate
the device and sends w. 4. Using w and {(x, y)}, the device
computes the gradient g and send it to the server using
privacy mechanisms. 5. The server receives the gradient g
and updates w. While one device is performing routines 1-
5, another device(s) are allowed to perform the same routines
asynchronously. Devices can join or leave the task at any time.
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Algorithm 1 Device side

Input: privacy levels εg, εe, εyk , minibatch size b, max buffer
size B, classifier model (C, h, l, λ from Eq. (2))
Init: set ns = 0, ne = 0, nk

y = 0, k = 1, ..., C
Communication to server: ĝ, ns, n̂e, n̂

k
y

Communication from server: w
Device Routine 1

if ns ≥ B then
stop collection to prevent resource outage

else
receive a sample (x, y) (in a regular interval or triggered
by events), and add to the secure local buffer
ns = ns + 1

end if
if ns ≥ b then

checkout w from the server via HTTPS
call Device Routine 2.

end if
Device Routine 2

Using w from the server and {(x, y)} from the local buffer,
for i = 1, ..., ns do

make a prediction ypred = h(xi;w)

n
(yi)
y = n

(yi)
y + 1

ne = ne + I[ypredi �= yi]
Incur a loss l(ypred, yi)
Compute a subgradient gi = ∇wl(h(xi;w))

end for
Compute the average g̃ = 1

ns

∑
i gi + λw

Sanitize data with Device Routine 3
Checkin ĝ, ns, n̂e n̂

k
y , k = 1, ..., C with server via https

Reset ns = 0, ne = 0, nk
y = 0, k = 1, ..., C

Device Routine 3
Sample ĝ = g̃ + z from Eq. (10)
Sample n̂e = ne + z from Eq. (11)
Sample n̂k

y = nk
y + z, k = 1, ..., C from Eq. (12)

B. Algorithms

Crowd-ML algorithms are presented in Algorithms 1 and 2.
Device Routine 1 collects samples. When the number of
samples reaches the minibatch size b, the routine tries to checks
out the current model parameters w from the server and calls
Device Routine 2. Device Routine 2 computes the averaged
gradient from the stored samples and w received from the
server, sanitizes information by Device Routine 3, and sends
the sanitized information to the server. Device Routine 3 uses
Laplace noise and exponential mechanisms (described in the
next section) to sanitize the averaged gradient ĝ, the number
of misclassified samples n̂e and the label counts n̂k

y . Device
Routines 1-3 are performed independently and asynchronously
by multiple devices.

Server Routine 1 sends out current parameters w when
requested and Server Routine 2 receives checkins (ĝ, ns,
n̂e,n̂k

y) from devices when requested. The whole procedure
ends when the total number of iteration exceeds a maximum
value Tmax, or the overall error is below a threshold ρ.

Remark 1: In Device Routine 1, if check-out fails, the
device keeps collecting samples and retries check-out later.

Algorithm 2 Server side

Input: number of devices M , learning rate schedule η(t), t =
1, 2, ..., Tmax, desired error ρ, classifier model (C, h, l, λ from
Eq. (2))
Init: t = 0, randomized w, Nm

s = 0, Nm
e = 0, Nk,m

y , m =
1, ...,M, k = 1, ..., C

Stopping criteria: t ≥ Tmax or
∑M

m Nm
e∑M

m Nm
s

≤ ρ

Server Routine 1
while Stopping criteria not met do

Listen to and accept checkout requests
Authenticate device
Send current parameters w to device

end while
Server Routine 2

while Stopping criteria not met do
Listen to and accept checkin requests
Authenticate device (suppose it is device m)
Receive ĝ, ns, n̂e, n̂k

y , k = 1, ..., C.
Nm

s = Nm
s + ns

Nm
e = Nm

e + n̂e

Nk,m
y = Nk,m

y + n̂k
y

w = w − η(t)ĝ
t = t+ 1

end while

A prolonged period of network outage for a device can make
the parameter outdated for the device, but it does not affect
the overall learning critically. Similarly, failure to check-in
information with server in Device Routine 2 is non-critical.

Remark 2: In Device Routine 2, we can randomly set
aside a small portion of samples as test data. In this case, the
misclassification error is computed only from these held-out
samples, and their gradients will not be used in the average ĝ.

Remark 3: In Server Routine 2, more recent update meth-
ods [35], [36] can be used in place of the simple update rule
(3) without affecting differential privacy nor changing device
routines. Similarly, adaptive learning rates [37], [38] can be
used in place of (5), which can provide a robustness to large
gradients from outlying or malignant devices.

C. Privacy mechanism

In crowdsensing systems, users’ private data can be leaked
in many ways. System administrators/analysts can violate
privacy intentionally, or they may leak private information
unintentionally when publishing data analytics. There are also
more hostile types of attacks: by malicious devices posing as
legitimate devices, by hackers poaching data stored on the
server or eavesdropping on communication between devices
and servers. Instead of preserving privacy separately for each
attack type, we can preserve privacy from all these attacks
by a local privacy-preserving mechanism that is implemented
on each device and sanitizes any information before it leaves
the device. A local mechanism assumes that an adversary
can potentially access all communication between devices and
the server, which subsumes other types of attacks. This is
because the other forms of data that are 1) visible to malicious
devices, 2) stored in the server, or 3) released in public, are all
derived from what is communicated between devices and the
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server. We adopt a local ε-differential privacy as a quantifiable
measure of privacy in Crowd-ML. Formally, a (randomized)
algorithm that takes data D as input and outputs f is called
ε-differentially private if

P (f(D) ∈ S)
P (f(D′) ∈ S) ≤ eε (7)

for all measurable S ⊂ T of the output range and for all
data sets D and D′ differing in a single item. That is, even
if an adversary has the whole data D except a single item,
it cannot infer much more about that item from the output
of the algorithm f . A smaller ε makes such an inference
more difficult, and therefore makes the algorithm more private-
preserving. When the algorithm outputs a real-valued vector
f ∈ R

D, its global sensitivity can be defined by

S(f) = max
D,D′
‖f(D)− f(D′)‖1. (8)

where ‖ · ‖1 is the L1 norm. A basic result from the definition
of differential privacy is that a vector-valued function f with
sensitivity S(f) can be made ε-differentially private [3] by
adding an independent Laplace noise vector z where

P (z) ∝ e−
ε

S(f)
‖z‖1 . (9)

In Crowd-ML, we consider ε-differential privacy of any single
(feature,label)-sample1 revealed by communications from all
devices to the server, which are the gradients g̃, the numbers
of samples ns, the number of misclassified samples ne, and
the labels counts nk

y
2. The amount of noise required depends

TABLE I: Multiclass logistic regression

Prediction argmaxk w′kx
Risk R(w) = 1

N

∑
i[−w′yixi + log

∑
l e

w′lxi ] + λ
2

∑
k ‖wk‖2

Gradient ∇wk
R = 1

N

∑
i xi[−I[yi = k] + P (y = k|xi)] + λwk

on the choice of loss functions. We compute this value for
multiclass logistic regression (Table I), but it can be computed
similarly for other loss functions as well. By adding element-
wise independent Laplace noise z to averaged gradients g̃

ĝ =
1

b

∑
i

gi + z, P (z) ∝ e−
εgb

4 |z|, (10)

we have the following privacy guarantee:

Theorem 1 (Averaged gradient perturbation). The transmis-
sion of g̃ by Eq. (10) is εg-differentially private.

See Appendix A for proof.

To sanitize ne and nk
y , we add discrete Laplace noise [41]

as follows:

n̂e = ne + z, P (z) ∝ e−
εe
2 |z|, (11)

n̂k
y = nk

y + z, P (z) ∝ e−
ε
yk

2 |z|, (12)

1This event-level privacy is weaker than the privacy of all (possibly infinite)
samples of a subject over the course of time. We will consider only the former
privacy in this paper and refer the readers to [39] for a discussion of the
difficulty of the latter and also to [40] for a possible solution to the repeated
measurement problem.

2The communication from the server to devices {w(t)} can be recon-
structed by (3) from {g(t)}, and therefore is redundant to consider.

where z = 0,±1,±2, .... These mechanisms has the following
privacy guarantees:

Theorem 2 (Error and label counts). The transmission of ne

and nk
y by Eqs. (11) and (12) is εe- and εyk - differentially

private, respectively.

See Appendix B for proof.

Practically, a system administrator chooses ε depending on
the desired level of privacy for the data collected. A small
ε (→ 0) may be used for data that users deem highly private
such as current location, and a large ε (→ ∞) may be used
for less private data such as ambient temperature.

IV. ANALYSIS

In this section, we analyze the privacy-performance trade-
off and the scalability of Crowd-ML in comparison with purely
centralized or decentralized approaches of the existing crowd-
sensing systems. By design, Crowd-ML achieves differential
privacy with little loss of performance (O(1/b)), only moderate
computation load due to its simple optimization method, and
reduced communication load and delay (O(1/b)), where b is
the minibatch size.

A. Privacy vs Performance

Privacy costs performance – the more private we make
the system, the less accurate the outcome of analysis/learning.
From Theorem 1, Crowd-ML is ε-differentially private by
perturbing averaged gradients. The centralized approach can
also be made ε-differentially private by feature and label
perturbation (see Appendix C). Below we compare the impact
of privacy on performance between the centralized approach
and Crowd-ML. The performance of an SGD-based learning
can be represented by its rate of convergence to the optimal
value/parameters E[l(w(t))−l(w∗)] at iteration t, which in turn
depends on the properties of the loss l(·) (such as Lipschitz-
continuity and strong-convexity) and the step size η(t), with
the best known rate being O(1/t) [42]. When other conditions
are the same, the convergence rate is roughly proportional
E[l(w(t)) − l(w∗)] ∝ G2 to the amount of noise in the
estimated gradient G2 = supt E[‖ĝ(t)‖2] [43]. For Crowd-
ML, we have from (10)

E[‖ĝ‖2] = E[‖g̃‖2] + E[‖z‖2] = 1

b
E[‖g‖2] + 32D

(bεg)2
, (13)

where the first term is the amount of noise due to sampling,
and the latter is due to Laplace noise mechanism with D-
dimensional features. By choosing a large enough minibatch
size b, the impact of sampling noise and Laplace noise can be
made arbitrarily small3. In contrast, the centralized approach
has to add Laplace noise of constant variance 8

ε2 to each feature
and perturb labels with a constant probability (Appendix C).
Regardless of which optimization method is used (SGD or
not), the centralized approach has no means of mitigating the
negative impact of constant noise on the accuracy of learned
model, which will be especially problematic with a small ε.

3Although a larger batch size means fewer updates given the same number
of samples N , and too large a batch size can negatively affect the convergence
rate (see [44] for discussion).
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In the decentralized approach, a device need not interact
with a server, and is almost free of privacy concerns. However,
the increased privacy comes at the cost of performance. In
Crowd-ML and the centralized approach, samples pooled from
all devices are used in the learning process, whereas in the
decentralized approach, each device can use only a fraction
(∼ 1/M ) of samples. This undermines the accuracy of a
model learned by the decentralized approach. For example, it is
known from the VC-theory for binary classification problems
that the upper-bound of the estimation error with a 1/M -times

smaller sample size is
√
M/ logM -times larger [45].

B. Scalability

Scalability is determined by computation and communi-
cation loads and latencies on both device and server sides.
We compare these factors between centralized, crowd, and
decentralized learning approaches.

1) Computation load: For all three approaches, we assume
the same preprocessing is performed on each device to com-
pute features from raw sensory input or metadata. On the de-
vice side, the centralized learning approach requires generation
of Laplace noise per sample on the device. The crowd and
the decentralized approaches perform partial and full learning
on the device, respectively, and requires more processing.
Specifically, Crowd-ML requires computation of a gradient per
sample, a vector summation (for averaging) per sample, and
generation of Laplace random noise per minibatch. A low-
end smart device capable of floating-point computation can
perform these operations. The decentralized learning approach
can use any learning algorithms including SGD (similar to
Crowd-ML). However, if the decentralized approach is to make
up for the smaller sample size (1/M ) compared to Crowd-
ML, it may require more complex optimization methods which
results in higher computation load. For all three approaches,
the number of devices M do not affect per-device computation
load. Computational load on the server is also different for
these approaches. The centralized approach puts the highest
load on the server, as all computations take place on the
server. In contrast, Crowd-ML puts minimal load on the server
which is the SGD update (3), since the main computation is
performed distributed by the devices.

2) Communication load: To process incoming streams of
data from the device in time, the network and the server should
have enough throughput. The centralized learning approach
requires N number of samples to be sent over the network to
the server. For Crowd-ML with a minibatch size of b, devices
send N/b gradients altogether, and receives the same number
of current parameters, both of the same dimension as a feature
vector. Therefore, the data transmission is reduced by a factor
of b/2 compared to the centralized approach.

3) Communication latency: When using a public (and
mobile) network, latency is non-negligible. In the centralized
approach, latency may not be an issue, since the server need
not required to send any real-time feedback to the devices. In
Crowd-ML, latency is an issue that can affect its performance.
There are three possible delays that add up to the overall
latency of communication:

• Request delay (τreq): time since the check-out request
from a device until the receipt of the request at the

server
• Check-out delay (τco): time since the receipt of a

request at the server and the receipt of the parameter
at the device

• Check-in delay (τci): time since the receipt of the
parameters at the device until the receipt of the check-
ins at the server.

Due to delays, if a device checks out the parameter w at time
t0 and checks in the gradient ĝ and the server receives ĝ
at time t0 + τco + τci, the server may have already updated
the parameters w multiple times using the gradients from
other devices received during this time period. This number
of updates is roughly (τco + τci) ×MFs/b, where M is the
number of devices, Fs is the data sampling rate per device, and
1/b is the reduction factor due to minibatch. Again, choosing
a large batch size b relative to MFs can reduce the latency.
While exact analysis of impact of latency is difficult, there are
several related results known in the literature without consid-
ering privacy. Nedić et al. proved that delayed asynchronous
incremental update converges with probability 1 to an optimal
value, assuming a finite maximum latency. Recent work in
distributed incremental update [20], [21] also shows that a
near-optimal convergence rate is achievable despite delays. In
particular, Dekel et al. [21] shows that delayed incremental
updates are scalable with M by adapting the minibatch size.

V. EVALUATION

In this section, we describe a prototype of Crowd-ML im-
plemented on off-the-shelf Android phones and report results
of experiments in real and simulated environments.

A. Implementation

We implement a Crowd-ML prototype with three compo-
nents: a Web portal, commercial off-the-shelf smart devices,
and a central server. On the device side, we implement
Algorithm 1 on commercial off-the-shelf smartphones as an
app using Android OS 4.3+. Our prototype uses smartphones,
but will be easily ported to other smart device platforms.
On the server side, we implement Algorithm 2 on a Lenovo
ThinkCentre M82 machine with a quad-core 3.2 GHz Intel
Core i5-3470 CPU and 4 GB RAM running Ubuntu Linux
14.04. The server runs the Apache Web server (version 2.4)
and a MySQL database (version 5.5).

Also on the server side, our Crowd-ML prototype provides
a Web portal over HTTPS where users can browse ongoing
crowd-learning tasks and join them by downloading the app
to their smart devices. To enhance transparency, details of
tasks (objective, sensory data collected, labels collected, and
learning algorithms used) and our privacy mechanisms is ex-
plained. It also displays timely statistics about crowd-learning
applications such as error rates and activity label distributions,
which are differentially private. We implement the portal in
Python using the Django4 Web application framework and
Matplotlib5 for statistical visualization.

4http://www.djangoproject.com
5http://matplotlib.org
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B. Activity Recognition in Real Environments

In this experiment, we perform activity recognition on
smart devices. The purpose of this demonstration is to show
Crowd-ML working in a real environment, so we choose a
simple task of recognizing three types of user activities (“Still”,
“On Foot”, and “In Vehicle”). We install a prototype Crowd-
ML application on 7 smartphones (Galaxy Nexus, Nexus S,
and Galaxy S3) running Android 4.3 or 4.4. The seven smart-
phones are carried by college students and faculty over a period
of a few days. The devices’ triaxial accelerometers are sampled
at 20 Hz. In this demonstration, we avoid manual annotation
of activity labels to facilitate data acquisition, and instead use
Google’s activity recognition service to obtain ground truth

labels. Acceleration magnitudes |a| =
√

a2x + a2y + a2z are

computed continuously over 3.2 s sliding windows. Feature
extraction is performed by computing the 64-bin FFT of the ac-
celeration magnitudes. We set the sampling rate Fs = 1/30 Hz,
that is, a feature vector x and its label y is generated every
30 s. However, to avoid getting highly correlated samples and
to increase diversity of features, we collect a sample only when
its label has changed from its previous value. For example,
samples acquired during sleeping are discard automatically as
they all have “Still” labels. This lowers the actual sampling rate
to about Fs = 1/352 Hz (or about once every six minutes).
With this low rate, no battery problem was observed.

We use 3-class logistic regression (Table I) with λ = 0, b =
1, ε−1 = 0 and a range of η values. Repeated experiments
with different parameters are time-consuming, and we leave
the full investigation to the second experiment in a simulated
environment. In Fig. 3, we shows the collective error curves for
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Fig. 3: Time-averaged error across all devices for activity
recognition task.

the first 300 samples from the 7 devices. The error is a time-
averaged misclassification error as the learning progresses:

Err(t) = 1
t

∑t
i=1 I[yi �= ypredi (wi)]. The error curves for

different learning rates (5) are very similar, and virtually
converge after only 50 samples (=7 samples per device). This
experiment is a proof-of-concept that Crowd-ML can learn a
common classifier fast from only a small number of samples
per user.

C. Digit/Object Recognition in Simulated Environments

To evaluate Crowd-ML under various conditions, we per-
form a series of experiments on handwritten digit recognition
and visual object recognition. Since the two results are quite
similar, we only describe the digit recognition results (object
recognition result is in Appendix D). The MNIST dataset6

6http://yann.lecun.com/exdb/mnist/

consists of 60,000 training and 10,000 test images of hand-
written digits (0 to 9), which is a standard benchmark dataset
for learning algorithms. The task is to classify a test image
as one of the 10 digit classes. The images from MNIST data
are preprocessed with PCA to have a reduced dimension of 50
and L1 normalized. In this experiment, we compare the perfor-
mance of centralized, Crowd-ML, and decentralized learning
approaches using the same data and classifier (multiclass
logistic regression), under different conditions such as privacy
level ε, minibatch size b, and delays. To test the algorithms
with a full control of parameters, we run the algorithms in
a simulated environment instead of on a real network. We
can therefore choose the number of devices and maximum
delays arbitrarily. For simplicity, we set τ = τreq = τco = τci
(Section IV-B3). The τ is the maximum delay, and the actually
delays are sampled randomly and uniformly from [0, τ ] for
each communication instance.7

All results in this section are averaged test errors from 10
trials. For each trial, assignment of samples, order of devices,
perturbation noise, and amounts of delay are randomized.
Test errors are computed as functions of the iteration (the
number of samples used) up to five passes through the data.
Hyperparameters λ (Table I) and c (5) are selected from the
averaged test error from 10 trials. We set the number of devices
M = 1000. Consequently, each device has 60 training and 10
test samples on average.

Fig. 4 compares the performance of the centralized, crowd,
and decentralized learning approaches, without privacy or
delay (ε−1 = 0, b = 1, τ = 0). The error of centralized
batch training is the smallest (0.1), in a tie with Crowd-ML.
The error curve of Crowd-ML converges to the same low value
as the centralized approach. It shows that incremental update
by SGD in Crowd-ML is as accurate as batch learning when
privacy and delay are not considered. In contrast, the error
curve of the decentralized approach converges at a slower rate
and also converges to a high error (∼ 0.5), despite using the
same overall number of samples as other algorithms, due to
the lack of data sharing.
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Fig. 4: Comparison of test error for centralized, crowd, and
decentralized learning approaches, without delay or privacy
consideration. The curves show how error decreases as the
number of iterations (number of samples used) increases over
time. The batch algorithm is not incremental and therefore is
a constant.

We perform tests with varying levels of privacy ε. The
privacy impacts the centralized approach via (15) and (16)8

7We can test with any distribution other than the uniform distribution as
well.

8The features and labels for test data are not perturbed.
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and also Crowd-ML via (10). With low privacy (ε−1 → 0),
the performance of both centralized and crowd approaches
are almost the same as Fig. 4, and we omit the result. With
high privacy (ε → 0), the performance of both approaches
degrades to a unusable level. Here we show their performances
at ε−1 = 0.1 in Fig. 5, where the performance is in a
transition state between high and low privacy regions. Firstly,
the centralized and crowd approaches both perform worse than
they did in Fig. 4, which is the price of privacy preservation.
Among these results, Crowd-ML with a minibatch size b = 20
has the smallest asymptotic error, much below the centralized
(batch). Crowd-ML with b = 1 and 10 still achieves similar or
better asymptotic error compared to Central (batch). As pre-
dicted from Section IV, increasing the minibatch size improves
the performance of Crowd-ML. When SGD is used for the
centralized approach (Central SGD) with perturbed features
and labels, its performance is very poor (∼ 0.9) regardless of
the minibatch size, due to the larger noise required to provide
the same level ε of privacy as Crowd-ML.
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Fig. 5: Comparison of test error for centralized and crowd
learning approaches with privacy (ε−1 = 0.1), varying mini-
batch sizes (b), and no delay.

Lastly, we look at the impact of delays on Crowd-ML with
privacy ε−1 = 0.1. We test with different delays in the unit
of Δ = τ/(MFs), that is, the number of samples generated
by all device during the delay of size τ . In Fig. 6, we show
the results with two minibatch sizes (b = 1, 20) and varying
delays (1Δ, 10Δ, 100Δ, 1000Δ). The delay of 1000Δ means
that a maximum of 3×1000 samples are generated among the
devices, between the time a single device requests a check-out
from the server and the time the server received the check-in
from that device, which is quite large. Fig. 6 shows that the
increase in the delay somewhat slows down the convergence
with a minibatch size of 1, and the converged value of error
is similar to or worse than Central (batch). However, it also
shows that with a minibatch size of 20, delay has little effect
on the convergence, and the error is much lower than Central
(batch). Note that with the minibatch size of 20, there is a
small plateau in the beginning of error curves, reflecting the
devices’ initial waiting time for their minibatches to be filled
before computing begins. After this initial waiting time, the
error starts to decrease at a fast rate.

VI. CONCLUSION

In this paper, we proposed Crowd-ML, a machine learn-
ing framework for a crowd of smart devices. Compared to
previous crowdsensing systems, Crowd-ML is a framework

0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.2

0.4

0.6

0.8

1

Iteration

Test error

 

 

Crowd−ML (b=1,1Δ)
Crowd−ML (b=1,10Δ)
Crowd−ML (b=1,100Δ)
Crowd−ML (b=1,1000Δ)
Crowd−ML (b=20,1Δ)
Crowd−ML (b=20,10Δ)
Crowd−ML (b=20,100Δ)
Crowd−ML (b=20,1000Δ)
Central (batch)

Fig. 6: Impact of delays on Crowd-ML with privacy (ε−1 =
0.1), varying minibatch sizes, and varying delays.

that integrates sensing, learning, and privacy mechanisms
together. Algorithmically, Crowd-ML uses recent advances in
distributed and incremental learning and implements strong
differentially private mechanisms. We analyzed Crowd-ML to
show its advantages over purely centralized or decentralized
approaches. We implemented a prototype and evaluated the
framework with a simple activity recognition task in a real
environment as well as larger-scale experiments in simulated
environments that demonstrate the advantages of Crowd-ML’s
design. Crowd-ML is a general framework for learning with
crowdsensing data, and is open to further refinements for
specific applications.

APPENDIX

A. Proof of Theorem 1

In our algorithms, a device receives w from the server
and sends averaged gradients ĝ along with other information.
We assume ‖x‖1 ≤ 1, which can be easily achieved by
normalizing the data. The sensitivity of an averaged gradient
for logistic regression is 4/b as shown below. There are C
parameter vectors w1, ..., wC for multiclass logistic regression.
Let the matrix of gradient vectors corresponding to C param-
eter vectors be

g = [g1 g2 · · · gC ] = x[P1 · · · Py−1 · · · PC ]

+λ[w1 · · · wC ] = xM + λ[w1 · · · wC ],

where Pj = P (y = j|x;w) is the posterior probability, and M
is a row vector of Pj’s. Without loss of generality, consider
two minibatches D and D′ that differ in only the first sample
x1. The difference of averaged gradients g̃(D) and g̃′(D′) is

‖g̃ − g̃′‖1 ≤
1

b
(‖x1M1‖1 + ‖x′1M ′

1‖1) ≤
4

b
,

To see ‖M1‖1 ≤ 2, note that the absolute sum of the entries of
M1 is 2(1−Py1

) ≤ 2. The sensitivity of multiple minibatches
ĝ(1), ..., ĝ(T ) is the same as the sensitivity of a single ĝ(t),
and the ε-differential privacy follows from Proposition 1 of
[3].

B. Proof of Theorem 2

In addition to the averaged gradients, a device sends to the
server the numbers of samples ns, the number of misclassified
samples ne, and the labels counts nk

y . Perturbation by adding
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discrete Laplace noise is equivalent to random sampling by the
exponential mechanism [46] with P (n̂e|ne) ∝ e−

εe
2 |n̂e−ne|,

n̂e ∈ Z. If two datasets D and D′ are different in only one
item, then the score function d = −|n̂e− ne| changes at most
by 1. That is, maxD,D′ |d(n̂e, ne(D)) − d(n̂e, ne(D′))| = 1.
As with multiple gradients, the sensitivity of multiples sets of
(n̂e, n̂k

y) is the same as the sensitivity of a single set, and εe-
differential privacy follows from Theorem 6 of [46]. Proof of
εyk -differential privacy of nk

y is similar.

Remark 1: Unlike the gradient ĝ, the information (ns,
n̂e, n̂k

y) is not required for learning itself, but for monitoring
the progress of each device on the server side. Therefore, εe
and εyk can be set to very small values without affecting the
learning performance so that ε = εg + εe + Cεyk ≈ εg .

Remark 2: n̂e and n̂k
y can be negative with a small

probability, which have a limited effect on the estimates of
the error rate and the prior at the server. After receiving T
minibatches, the error rate and the prior estimates are

Errest =

∑T
i n̂e(i)∑T
i ns(i)

and P est(y = k) =

∑T
i n̂k

y(i)∑T
i ns(i)

. (14)

Since n̂e(i)−ne(i) is independent for i = 1, 2, ... and has zero-

mean and constant variance 2e−εe/2

(1−e−εe/2)2
[41], the estimate of

error rate converge almost surely to the true error rate with
vanishing variances as T increases. The same can be said of
the estimate of prior P (y).

C. Differential Privacy in Centralized Approach

For completeness of the paper, we also describe the ε-
differential privacy mechanisms for the centralized approach.
In the centralized approach, data are directly sent to the server.
Without a privacy mechanism, an adversary can potentially
observe all data. To prevent this, ε-differential privacy can be
enforced by perturbing the features

f(x) = x+ z, , P (z) ∝ e−
εx
2 |z|, (15)

and also perturbing the labels. To perturb labels, we use the
exponential mechanism to sample a noisy label ŷ given a true
label y from

P (ŷ|y) ∝ e
εy
2 d(y,ŷ), y, ŷ ∈ {1, ..., C} (16)

where we use the score function d(y, ŷ) = I[y = ŷ].

Theorem 3 (Feature and label perturbation). The transmission
of x and y by feature perturbation (15) and the exponential
mechanism (16) is εx- and εy-differentially private.

Proof: Assume ‖x‖1 ≤ 1. Feature transmission is an
identity operation and therefore has sensitivity 2. For label
transmission, the score function d(ŷ, y) = I[ŷ = y] changes
at most by 1 by changing y. From Proposition 1 of [3]
and Theorem 6 of [46], respectively, we achieve εx- and εy-
differential privacy of data.

Note that the sensitivity is independent of the number of
features and labels sent, and that we have to add the same
level of independent noise to the features and apply the same
amount of label perturbation. An overall ε-differential privacy
is achieved by ε = εx+ εy . The required privacy levels εx and
εy can be chosen differently, and we use εx = εy = ε/2 in the
experiments.

D. Experiments with Visual Object Recognition Task

We repeat the experiments in Section V-C for an object
recognition task using CIFAR-10 dataset, which consists of
images of 10 types of objects (airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, truck) collected by [47]. We
use 50,000 training and 10,000 test images from CIFAR-10.
To compute features, we use a convolutional neural network9

trained using ImageNet ILSVRC2010 dataset10, which consists
of 1.2 million images of 1000 categories. We apply CIFAR-10
images to the network and use the 4096-dimensional output
from the last hidden layer of the network as features. Those
features are preprocessed with PCA to have a reduced dimen-
sion of 100 and are L1 normalized. We use the same setting
in Section V-C to test Crowd-ML on this object recognition
task. The results are given in Figs. 7, 8, and 9. The figures are
very similar to the handwritten digit recognition task (Figs. 4,
5, 6), except that the error is larger (e.g., 0.3 in Fig. 7) than
the error for digit recognition (0.1 in Fig. 4). This is because
the CIFAR dataset is more challenging than MNIST due to
variations in color, pose, viewpoint, and background of object
images.

0 1 2 3 4 5

x 10
4

0

0.5

1

Iterations

Test error

 

 

Decentral (SGD)
Crowd−ML (SGD)
Central (batch)

Fig. 7: Comparison of test error for centralized, crowd, and
decentralized learning approaches, without delay or privacy
consideration.
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Fig. 8: Comparison of test error for centralized and crowd
learning approaches with privacy (ε−1 = 0.1), varying mini-
batch sizes (b), and no delay.
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