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ABSTRACT
Anonymous location information may be correlated with restricted
spaces such as home and office for subject re-identification. This
makes it a great challenge to provide location privacy protection
for users of location-based services. Existing work adopts tra-
ditional K-anonymity model and ensures that each location dis-
closed in service requests is a spatial region that has been visited
by at least K users. This strategy requires a user to specify an ap-
propriate value of K in order to achieve a desired level of privacy
protection. This is problematic because privacy is about feeling,
and it is awkward for one to scale her feeling using a number. In
this paper, we propose a feeling-based privacy model. The model
allows a user to express her privacy requirement by specifying a
public region, which the user would feel comfortable if the region
is reported as her location. The popularity of the public region,
measured using entropy based on its visitors’ footprints inside it,
is then used as the user’s desired level of privacy protection. With
this model in place, we present a novel technique that allows a
user’s location information to be reported as accurate as possible
while providing her sufficient location privacy protection. The
new technique supports trajectory cloaking and can be used in
application scenarios where a user needs to make frequent loca-
tion updates along a trajectory that cannot be predicted. In ad-
dition to evaluating the effectiveness of the proposed technique
under various conditions through simulation, we have also imple-
mented an experimental system for location privacy-aware uses
of location-based services.

Categories and Subject Descriptors
H.2.0 [Database Management]: General—Security, integrity,
and protection; H.2.8 [Database Management]: Database Ap-
plications —Spatial databases and GIS

General Terms
Security, Algorithm, Performance, Experimentation
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1. INTRODUCTION
While location-based services (LBSs) offer significant oppor-

tunities for a broad range of markets, they present users signifi-
cant privacy threats. An obvious one is service anonymity threat,
i.e., the potential exposure of service uses. Just like regular Inter-
net access, a user may not want to be identified as the subscriber
of some LBS, especially when the service is sensitive. Another
threat, which is more serious, is location privacy. A user’s loca-
tion disclosed in her service request may reveal sensitive private
information such as health conditions, lifestyles, and so on. In
particular, it has the potential to allow an adversary to locate the
subject and result in physical harm.

For self-protection, it is natural and necessary for a user to
withhold her true identity when requesting an LBS. However,
simply using a pseudonym, or not using any identifier at all, is
not sufficient. This is due to the fact that a user’s location itself
may be correlated with restricted spaces such as house and of-
fice to reveal her real-world identity. For example, if a location
belongs to a private property, then the adversary can derive that
the user is most likely the owner of the property. A single loca-
tion sample may not be linked directly to a particular user, but
the accumulation of a time-series sequence of her location sam-
ples will eventually reveal her identity [16, 29]. Once the user is
identified, all her visits may be disclosed.

The above problem, known as restricted space identification,
has motivated a series of research effort on location depersonal-
ization. The proposed techniques reduce location resolution and
can be classified into two categories according to their purposes:

• Anonymous service uses: The techniques in this category
(e.g., [15], [13], [25], [7], [9]) aim at preventing location
information collected by the LBS providers from being
used to identify a service user. When a user requests an
LBS, these schemes compute a cloaking box that contains
the user and at least K − 1 neighbors. This box is then
reported as the user’s location to the corresponding LBS
provider. Since each of the K users may be the one who
requests the service, this strategy provides a certain level
of guarantee that the service user cannot be identified.

• Location privacy protection: The above techniques pro-
tect users’ anonymity in service uses, but not their location
privacy. By correlating with restricted spaces, an adver-
sary may be able to identify the users in a cloaking box.
The adversary may not know who requests the service, but
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knows the location of these users – they are all in the area
at the time of the service request. To address this problem,
the technique proposed in [30] ensures that each location
reported on behalf of a user is a cloaking region that con-
tains at least K different footprints, each being a location
sample collected at some time point. A spatial region with
K different footprints means it has been visited by K dif-
ferent people. An adversary may manage to identify these
visitors, but will not know who was there at time of the
service request.

In this paper, we investigate location depersonalization from
the perspective of location privacy protection. To our knowledge,
exploring historical location samples for location depersonaliza-
tion is the only practical solution up to date that can prevent
anonymous location information from being correlated with re-
stricted spaces to derive who’s where at what time. This strategy
can be applied to depersonalize not only individual location sam-
ples, but also location samples that form a user’s trajectory. Nev-
ertheless, the technique proposed in [30] has several problems.
Like all other techniques, it adopts the traditional K-anonymity
model [35, 36]. To request a desired level of privacy protection,
a user needs to specify the value of K. Unfortunately, choosing
an appropriate K value can be difficult. For example, why would
a user feel that her privacy is well-protected if K = 20, but not if
K = 19? Ultimately, privacy is about feeling, and it is awkward
for one to scale her feeling using a number. As in the above ex-
ample, it is hard to tell the difference between the two K values
in terms of privacy feeling. A user can always choose a large
K to ensure a sufficient privacy protection, but this will result
in unnecessary reduction of location resolution. A very coarse
location will make it difficult to provide a meaningful LBS.

In addition to privacy modeling, robustness is another issue.
Ensuring each reported location has been visited by at least K
different users may not provide privacy protection at the level
of K. Indeed, it can achieve so only when these K users have
an equal chance of visiting the region, i.e., they leave the same
amount of footprints in the area. In reality, a spatial region may
be visited by many people, but some may have a dominant pres-
ence (e.g., in an office). In this case, the one who is known to
be dominant is most likely to be the subject. Furthermore, for
continuous LBSs, where users needs to make frequent location
updates, the proposed technique requires a user to report her tra-
jectory ahead of her travel in order to compute a cloaking trajec-
tory that has been traversed earlier by at least K − 1 other users.
This requirement prevents the technique from being used when a
user’s movement is not pre-determined.

This paper addresses the above problems. We propose a feeling-
based privacy model for location privacy protection. Our idea is
to let a user express her privacy requirement by specifying a pub-
lic region, instead of a value of K. A spatial region is considered
a user’s public region if the user feels comfortable that the re-
gion is reported as her current location when the user is inside
the region. For example, a shopping mall can be a user’s public
region, if the user does not mind that the mall is disclosed as her
location when she requests an LBS in it. Given a public region
specified by a user, we apply the concept of entropy to measure
its popularity based on the footprints collected from the visitors
of the region. This popularity is then used as the user’s privacy
requirement: For each location disclosed on behalf of the user,
we ensure that the popularity of this location is no less than that
of the specified public region. With this privacy model in place,
we investigate the challenges of location depersonalization in the
context of continuous LBSs. We present a novel technique that
allows a user’s time-series sequence of location information to

be reported as accurately as possible while ensuring that her lo-
cation privacy requirement is always met. Unlike the existing
approach [30], the new technique cloaks a user’s movement on
the fly without having to know the moving trajectory in advance.
As such, it can be used in application scenarios where a user
needs to make frequent location updates along a trajectory that is
not predetermined. We evaluate the performance of the proposed
technique under various conditions through simulation. More-
over, we have implemented a prototype that supports location
privacy-aware uses of LBSs.

The rest of this paper is organized as follows. In Section 2,
we present our feeling-based privacy model and introduce some
definitions. In Section 3, we propose an algorithm for on-the-fly
trajectory cloaking. We evaluate the performance of the proposed
technique through simulation in Section 4, and present a proto-
type that we implement in Section 5. We discuss related work in
more detail in Section 6, and conclude this paper in Section 7.

2. FEELING-BASED PRIVACY MODEL
An anonymous location disclosed for an LBS may be corre-

lated with restricted spaces to identify a set of possible service
requestors. The more popular a spatial region is, the more diffi-
cult it is for an adversary to single out the true requestor. A user
can express her desired level of protection by specifying a value
of K: a spatial region disclosed on her behalf must have at least
K different visitors. Alternatively, a user can specify a public
region and request that her disclosed location must be at least as
popular as that space. An example of public region can be some
shopping mall in town. As compared to choosing a number of K,
it is much more intuitive for a user to express her privacy require-
ment by identifying a spatial region which she feels comfortable
is reported as her location should she request an LBS from it. We
refer to this approach as feeling-based privacy modeling.

When a location is disclosed for an LBS on a user’s behalf, it
must be at least the same popular as the public region she spec-
ifies. The problem now is how to measure the popularity of a
spatial region. The number of its visitor along is not sufficient to
quantify its popularity, because some people may have a domi-
nant presence in that space. If an LBS is requested from an of-
fice, then the office staff is more likely to be the service requestor,
even if the office has many visitors. To address this problem, we
borrow the concept of entropy from Shannon’s information the-
ory [28]. Suppose we can collect location samples from cellular
phone users. These location samples, each called a footprint, can
then be used to measure the popularity of a spatial region as fol-
lows.

DEFINITION 1. Let R be a spatial region and S(R) = {u1, u2,
· · · , um} be the set of users who have footprints in R. Let ni

(1 ≤ i ≤ m) be the number of footprints that user ui has in
R, and N =

∑m
i=1 ni. We define the entropy of R as E(R) =

−∑m
i=1

ni
N

log ni
N

, and the popularity of R as P (R) = 2E(R).

The value of E(R) can be interpreted as the amount of addi-
tional information needed for the adversary to identify the ser-
vice user from S(R) when R is reported as her location in re-
questing an LBS. According to the above definition, we have
1 < P (R) ≤ m. P (R) has the maximum value m when ev-
ery user in S(R) has the same number of footprints in R. On the
other hand, P (R) has the minimum value when one user in S(R)
has N −m + 1 footprints in R while each of the rest has only 1.
We have the following two observations. First, P (R) is higher
if m is larger. In other words, a region is more popular if it has
more visitors. Second, P (R) has a lower value if the distribution
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of footprints is more skewed. If some users are dominant in the
region, P (R) will be much less than m. In this case, R needs
to be enlarged to contain more users in order to have a required
popularity.

Let R be a user’s public region. When the user requests a
sporadic LBS, where the request can be seen as an independent
event, we can find a cloaking box that 1) contains the user’s cur-
rent position, 2) has a popularity that is no less than P (R), and
3) is as small as possible, and then report this box as the user’s
location. When the user requests a continuous LBS, a time-series
sequence of cloaking boxes will be reported that form a trajec-
tory. In this case, simply ensuring that each cloaking box has a
popularity no less than P (R) does not protect the user’s location
privacy at her desired level. This is due to the fact that the adver-
sary can narrow down the list of possible service users by finding
the common visitors of these cloaking boxes. To prevent such
attack, we must use the footprints of the common set of users,
instead of all visitors of the regions, in computing the popularity
of each cloaking box. We define the popularity of a spatial region
with respect to a given set of users as follows.

DEFINITION 2. Given a spatial region R, and a user set U =
{u1, u2, · · · , um′} ⊆ S(R), the entropy of R with respect to

U is EU (R) = −∑m′
i=1

ni
N′ log ni

N′ , where ni is the number of

footprints that ui has in R, and N ′ =
∑m′

i=1 ni. The popularity
of R with respect to U is PU (R) = 2EU (R).

When a sequence of cloaking boxes are generated on a user’s
behalf, we must ensure that the popularity of each cloaking box
with respect to the common set of visitors is no less than that of
the user’s public region. In other words, the trajectory formed
by these cloaking boxes must be a P-Popular Trajectory (PPT),
which is formally defined below:

DEFINITION 3. Let T = {R1, R2, · · · , Rn} be a sequence
of cloaking boxes generated for a user, and S(Ri) (1 ≤ i ≤ n)
the set of people who have footprints in Ri. We say T is the user’s
PPT if for each Ri, it satisfies that (1) Ri covers the user’s
position at the time when Ri is disclosed, and (2) PS(Ri) ≥
P (R), where S =

⋂
1≤i≤n S(Ri) and R is the public region

specified by the user.

Given a trajectory T = {R1, R2, · · · , Rn}, we define its res-

olution to be |T | =
∑n

i=1 Area(Ri)

n
, where Area(Ri) denotes

the area of box Ri. For location privacy protection, a trajectory
formed by the location samples disclosed on a user’s behalf must
be a PPT. Meanwhile, its resolution needs to be as fine as possi-
ble to guarantee the quality of the required LBS services. In the
rest of this paper, we focus on how to generate such a PPT for a
user to entertain a continuous LBS.

3. TRAJECTORY CLOAKING
Similar to [30], we assume mobile clients communicate with

LBS providers through a trusted central location depersonaliza-
tion server (LDS) managed by the clients’ cellular service carri-
ers. For LBSs that require user authentication (e.g., for service
charges), we assume anonymous authentication (e.g., [18], [27],
[21]) is used. The carriers offer the depersonalization services as
a value-added feature to their clients, and supply the LDS with an
initial footprint database that contains location samples collected
from their clients (e.g., through regular phone calls). These lo-
cation samples will be used to compute the popularity of a spa-
tial region and for trajectory cloaking. The database will be ex-
panded with the location data obtained from mobile users in their
requests of LBSs.

We assume each client configures her privacy requirement by
specifying a public region. When a user requests an LBS, she
also informs the LBDs a travel bound B, a rectangular spatial
region that bounds her travel during the service session. In re-
sponse, the LDS randomly generates a service session ID and
contacts the service provider. After establishing a service ses-
sion, the service user periodically reports her current location to
the LDS. For each location update, the LDS computes a cloak-
ing box which contains the service user’s current location, and
exports this box along with the session ID to the correspond-
ing LBS provider. The information received from the provider
is then forwarded back to the service user. As mentioned early,
to prevent restricted space identification, the trajectory created
by the sequence of cloaking boxes must be a PPT that satisfies
the user’s privacy requirement. The key issue is how to find a
common set of users for cloaking so that the trajectory, which
is undetermined, can have a resolution that is as fine as pos-
sible. In the following subsections, we first describe the main
data structure used for indexing the location samples stored in
the footprint database, and then present a heuristic algorithm for
trajectory cloaking.

3.1 Data Structure

Level 1

Level 2

Level 3

Level h

uid pos

uid num

Footprint table

Cell table

tlink

Trajectories

Figure 1: Data structure

We partition the network domain recursively into cells in a
quad-tree style. The partitioning stops when the size of cells be-
comes less than a threshold (our implementation sets each cell
to be at least 100 × 100 meter2). All the cells generated in the
partitioning form a pyramid structure as shown in Figure 1. Sup-
pose the partitioning stops at the hth recursion, then the pyramid
has a height of h. The top level in the pyramid is level 1 and has
only one grid cell that covers the whole network domain. Each
grid cell except the ones at the bottom level is composed of four
cells at the next lower level, which we refer to as its child cells.

Each cell at the bottom level h keeps a footprint table and a
user table. The footprint table stores the footprints the cell con-
tains, and each tuple of the table is a record of (uid, pos, tlink),
where uid is the identity of the mobile user that a footprint be-
longs to, pos is the coordinates of a footprint, and tlink is a
pointer that links to the corresponding trajectory stored in the
database. The user table records the number of footprints a user
has in the cell, and each tuple of the table is a record of (uid, num),
where num is the number of footprints the user has in the cell.
For each cell not at the bottom level, we also keeps a user table,
which is derived from the user tables corresponding to its four
child cells.

3.2 Generating PPT
We now discuss how to generate a PPT for a service user.

Given the user’s public region R, the LDS computes its popu-
larity P (R) using the cells at the bottom level that overlap with
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R. When the user makes the first location update, the server se-
lects a set of users, which we will refer to as a cloaking set. The
footprints of this set of users are then used for location cloaking
whenever the service user makes a location update.

3.2.1 Selecting cloaking set
It may first appear that we can determine the cloaking set, de-

noted as S, by finding the set of users who have footprints closest
to the starting point of the service user. This simple solution min-
imizes the size of the first cloaking box. However, as the service
user moves, the users in S may not have footprints that are close
to her current position. As a result, the size of the cloaking boxes
may become larger and larger, making it difficult to guarantee
the quality of LBS. Thus, when selecting the cloaking set, we
should consider its affect on the cloaking of not only the user’s
first but all location updates in the LBS. But the challenge is that
the service user’s route is not predetermined, and thus the LDS
cannot figure out whose footprints will be closer to the service
user during her travel. To address this challenge, our idea is to
find those users who have visited most places in the service user’s
travel bound B and use them to create the cloaking set. As these
users have footprints spanning the entire region B, it will help
generate a PPT with a fine resolution.

We say a user is l-popular within B, if she has footprints in ev-
ery cell at level l that overlaps with B. According to the pyramid
structure, cells at level with a larger l have a finer granularity.
This implies that given an l-popular user, the larger the value of
l is, the more popular the user is. Figure 2 shows an example
in which a network domain is partitioned into a 4-level pyramid
(There are 1, 4, 16, 64 cells at each level respectively from top to
bottom). It also shows a travel bound B and the footprints inside
it. The footprints in different colors belong to different users. u1,
u2, and u3 are three 2-popular users within B because they have
footprints in the two cells at level 2 of the pyramid which overlap
with B; u2, u3 are two 3-popular users within B since they have
footprints in all four cells at level 3 that overlap with B; only u3

is 4-popular since she is the only one who has footprints in all
the sixteen cells at level 4 that overlap with B.

u3

u1

u2

B

Figure 2: A travel bound and footprints inside

Based on the above definitions, we now present a simple but
effective algorithm that can find a cloaking set for trajectory cloak-
ing. The pseudo code is given in Algorithm 1. In this algorithm,
the LDS sorts the users in S(B) according to their popularity at
level l, and selects the most popular users in S(B) as the cloak-
ing set, starting from the bottom to top of the pyramid. Let Cl

denote the set of cells at level l in the pyramid, C′
l the set of

cells in Cl that overlap with B, and Sl the set of users who are

l-popular within B. The LDS first finds Sh. Since level h is the
bottom level, these users are the most popular users in S(B). To
find Sh (i.e., the users who have visited all the cells in C′

h), the
LDS simply joins the user tables of these cells on column uid
(line 6-7). Next, the LDS computes the popularity of B with re-
spect to Sh using their footprints in B. If the popularity PSh(B)
is less than P (R), it means that cloaking with the footprints of
the users in Sh cannot provide the desired level of privacy pro-
tection for the service user. In this case, the LDS considers the
cells one level higher, i.e., level h − 1 (line 9), and computes
Sh−1 and PSh−1(B) similarly. This procedure is repeated un-
til at some level l the popularity PSl(B) is no less than P (R).
The complexity of this algorithm is determined by the cost of
computing user set Sl at each level from bottom to top. Let m
denote the number of users in S(B) and k the number of cells in
C′

h. Then, the cost of joining two user tables is O(m), and the
cost of joining user tables at bottom level (i.e., computing Sh)
is O(k ·m). According to the pyramid structure, the number of
cells at a certain level that overlap with B is about one fourth of
those at the next lower level. Thus, the total cost of finding Sl on
all levels is O(k ·m).

Algorithm 1 SelectCloakingSet(P (R), B)

1: U ← ∅{U keeps the cloaking set}
2: l← h
3: while U ⊂ S(B) and PU (B) < P (R) do
4: {Get cells at level l overlapping with B}
5: C′

l ← Overlap(Cl, B)
6: {Join user tables of C′

l by column uid}
7: T ← Join(C′

l , uid)
8: U ← Sl ← T.uid
9: l ← l − 1

10: end while
11: return U

The above algorithm checks the users level by level, from the
bottom to top. If a user is l-popular within B, it must also be
(l − 1)-popular within B. Thus, each time the algorithm checks
the cells at a higher level, the cloaking set is expanded to include
more users. As long as P (R) ≤ P (B) (i.e., a user’s public
region is at most the same popular as that of her travel bound), the
algorithm will find a sufficient number of visitors within B for
the cloaking set. In the worst case, all users in S(B) are included
in the cloaking set. On the other hand, if P (B) < P (R), the
LDS does not need to find a cloaking set. It can simply compute
a spatial region that contains B and has a popularity no less than
P (R), and always report this region as the user’s location as long
as it moves inside B.

3.2.2 Computing cloaking boxes
During a service session, the service user updates a time-series

sequence of locations. For each location update p, the LDS
computes a cloaking box b using the footprints of users in the
cloaking set U . We develop a heuristic algorithm which com-
putes the cloaking box b as small as possible, and ensures that
PU (b) ≥ P (R). The pseudo code is given in Algorithm 2.

Given a location update p, the LDS first initializes the cloaking
box b to p which is the smallest cloaking box only containing the
service user herself. The LDS also initializes a searching box b′

to the cell that contains p at level l where the cloaking set U is
selected in Algorithm 1, since it contains footprints of all users in
the cloaking set. Then, for each user in U , the LDS gets the set of
her footprints Fu which are inside b′ but outside b, and in Fu the
LDS finds the closest one to p (line 7-8). Next, the LDS collects
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these footprints in set F , and computes the cloaking box b as the
minimal bounding box (MBB) of the footprints in F (line 11). If
b already contains all footprints of U in b′, the LDS expands the
searching box b′ by merging itself with its adjacent cells at the
bottom level (line 13-16). The above procedure is repeated until
PU (b) ≥ P (R), and the resulting cloaking box b is reported as
the service user’s location to the external service provider.

Algorithm 2 Cloak(p, P (R), U )

1: F ← ∅
2: l ← the level where U is determined
3: b← p
4: b′ ← the cell in Cl that contains p
5: while PU (b) < P (R) do
6: for all u ∈ U do
7: Fu ← the footprints of u in b′ − b
8: fu ← the closest footprint to p in Fu

9: F ← F + {fu}
10: end for
11: b←MBB(F )
12: if b contains all footprints of U in b′ then
13: {get cells at bottom level adjacent to b′}
14: C′ ← Adjacent(b′, h)
15: {merging the cells in C′ with b′}
16: b′ ← b′

⋃
C′

17: end if
18: end while
19: return b

4. PERFORMANCE STUDY
In this section, we evaluate the effectiveness of the proposed

technique under various conditions using location data syntheti-
cally generated based on a real road map. For comparison pur-
pose, we have implemented two other approaches. The first one,
which we will refer to as Naive, assumes the location updates
made a service user are independent to each other. For each lo-
cation update, Naive just finds a cloaking box which satisfies the
three conditions as described at the beginning of Section 3, and
reports it as the service user’s location in her service request.
Note that this scheme may not protect a user’s location privacy
at her desired level when she makes a time-series sequence of
location updates. The second approach is referred to as Plain
hereafter. This scheme determines the cloaking set for the ser-
vice users by finding the footprints closest to her start position.
After fixing the cloaking set, Algorithm 2 is applied to compute
the cloaking boxes for the service user during her entire service
session. To ease our presentation, we will refer to our proposed
technique as Advanced.

We modify the simulator Network-based Generator of Moving
Objects [5] to generate mobile nodes and simulate their move-
ment on the real road map of Oldenburg, Germany, a city about
15 × 15 km2. We extract four types of roads from the road
map, primary road (interstate expressway), secondary road (state
road), connecting road and neighborhood road as defined in cen-
sus TIGER/Line [2]. In our simulation, mobile nodes change
their speeds at each intersection, and the moving speed on a road
follows a normal distribution determined by the road type. The
mean speeds and the standard deviations of moving speeds on all
road types are listed in Table 1. We generate a footprint database
that contains a certain number of trajectories, which are assigned
to 2000 users. The number of trajectories each user has follows
a normal distribution with a standard deviation 0.1. These tra-

jectories are indexed using the grid-based approach discussed in
the Section 3.1. For each simulation, we generate a set of LBS
requests. Each service request contains a user’s ID, a public re-
gion, and a travel bound. The start position is randomly selected
within the travel bound, and the service user moves randomly
within the travel bound, i.e., when arriving at an intersection, she
randomly chooses a direction to move on. We assume a user’s
travel distance is proportional to the size of the travel bound, and
she makes a location update every 100 meters she moves. Other
parameters used in our study are given in Table 2. Unless other-
wise specified, the default values are used.

In our study, we are mainly interested in the following two per-
formance metrics. One is cloaking area, defined to be the average
area of cloaking boxes in a cloaking trajectory. The other one is
protection level. Given a cloaking trajectory, we measure its pro-
tection level using the ratio between the average popularity of its
cloaking boxes with respect to the common set of users who have
visited all of them and the popularity of the user specified public
region. Clearly, the protection level must be at least 1, otherwise
the cloaking trajectory fails to protect the service user’s location
privacy at the required level. In the following subsections, we
report how the performance of the three techniques is affected by
various factors.

Table 1: Traffic parameters
Road type Mean speed Standard deviation

Primary 100km/h 20km/h
Secondary 60km/h 15km/h
Connecting 45km/h 10km/h
Neighborhood 30km/h 5km/h

Table 2: Experiment settings

parameter range default unit
Number of users 2000 2000 unit
Public region size 50 - 250 150 meter
Trajectory database size 100K − 300K 200K unit
Travel bound size 2 − 6 4 km
Travel distance 2 − 6 4 km
Service request number 300 300 unit
Minimum cell size 100 × 100 100 × 100 meter2

4.1 Effect of Privacy Requirement
This study investigates the impact of privacy requirement (i.e.,

the popularity of the public region specified by a service user)
on the performance of the three techniques. We generated 300
service requests. Each request has a travel bound of a 4 × 4
km2 square region, and the travel distance of the correspond-
ing user during her service session is 4 km. Each service user
specifies her public region as a square region which contains her
start position. The size of a public region, measured by the side
length of the square, is varied from 50 to 250 meters. The per-
formance results are plotted in Figure 3. Figure 3(a) shows that
when the size of the public region increases, the average cloak-
ing area under all the three schemes increases. This is due to the
fact that a larger public region is likely to contain more people’s
footprints and have a higher popularity. To satisfy a higher level
of privacy requirement, a cloaking box needs to be larger to in-
clude more people. This study also shows that Plain always has
a much larger cloaking area as compared to the other two ap-
proaches. This scheme does does not take user popularity into
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consideration when selecting a user’s cloaking set. When some
unpopular users are selected in a cloaking set, the cloaking boxes
generated for the future movement of a service user will become
larger and larger in order to contain all users in the cloaking set.
On the other hand, Naive has the smallest cloaking area. This
scheme does not consider the correlation of the cloaking boxes
in a trajectory, just cloaking each location with a bounding box
that is as small as possible and has a popularity no less than that
of the public region. The problem is, simply ensuring that each
cloaking box satisfies the privacy requirement does not protect
a user’s privacy at her specified level. This is confirmed in Fig-
ure 3(b). It shows that the protection level of Naive is constantly
lower than 1. As for Plain and Advanced, they both guarantee
that the actual protection level is no less than required.

 1

 10

 100

 1000

 50  100  150  200  250

C
lo

ak
in

g 
ar

ea
 (

x1
00

0 
m

2 )

Public region size (m)

Plain
Advanced

Naive

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 50  100  150  200  250

P
ro

te
ct

io
n 

le
ve

l

Public region size (m)

Plain
Advanced

Naive

(b)

Figure 3: Effect of privacy requirement

4.2 Effect of Travel Distance
In this study, we investigated the impact of travel distance on

the performance of the three techniques. In each simulation run,
we set the public region as a 150 × 150 m2 square, and gener-
ated 300 service requests. The travel distance is varied from 2
km to 6 km, and accordingly the side length of travel bound is
varied from 2 km to 6 km. The performance results are shown
in Figure 4(a) and (b). Figure 4(a) shows that under both Plain
and Advanced, the average cloaking area increases as the travel
distance increases. However, Plain performs much worse than
Advanced. The reason behind is explained as follows. When the
travel distance is larger, the trajectory of the service user tends
to traverse through a larger region. With an unpopular user in a
cloaking set, it is more difficult to find their footprints close for

each location update in the trajectory. Plain performs worse be-
cause in average it includes more unpopular users in a cloaking
set. On the other hand, the cloaking area under Naive remains al-
most constant as the travel distance changes. It is due to the fact
that Naive assumes each location update is an independent event.
For each location update, it simply finds the nearest footprints to
cloak. As such, the cloaking area is irrelevant to the number of
location updates in the trajectory. Again, this approach cannot
be used for location privacy protection when a user has to report
her location periodically in a service session. Figure 4(b) shows
the protection level of Naive decreases as the travel distance in-
creases. Since each location update is cloaked independently in
Naive, a longer trajectory tends to have a less number of users
who have visited all cloaking boxes in the trajectory, and thus
has a lower popularity with respect to this common set of users.
In contrast, the privacy level of neither Plain nor Advanced is
much affected by the variance of travel distance.
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Figure 4: Effect of travel distance

4.3 Effect of Footprint Database Size
This study investigates the impact of the number of trajecto-

ries in the footprint database on the performance. We varied the
number of trajectories in the database from 100,000 to 300,000.
The performance results are plotted in Figure 5(a) and (b). It is
shown in Figure 5(a) that all schemes have better cloaking results
when the database contains more trajectories. Clearly, more his-
torical trajectories mean that more footprints collected in a fixed
spatial region. As a result, a smaller cloaking box may be popu-
lous enough to meet the privacy requirement. By adding a service
user’s moving route to the database for future cloaking, our tech-
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nique can generate better cloaking results. This feature makes it
especially attractive for large-scale LBS that consists of a large
number of users. Figure 5(b) again shows that the protection
level of Naive is constantly lower than 1. On the other hand, the
protection level of both Plan and Advanced is always above 1.
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Figure 5: Effect of database size

5. IMPLEMENTATION
We have implemented an experimental system based on the

technique presented in the previous sections. The prototype, called
location privacy aware gateway (LPAG), has two software com-
ponents, client and server. Client is implemented in C# using
.Net Compact Framework 1.0. It runs on Windows Mobile 2003
platform and we have tested it with two types of mobile devices,
HP IPAQ 6515 and HP IPAQ 4310 as shown in Figure 6. The
former is a smart phone with a built-in 4-channel GPS receiver.
The device communicates with the server through AT&T’s GPRS
wireless data service. As long as it is within the region cov-
ered by the carrier’s service network, it can stay connected to the
server which is located in our lab. The other type of client device,
namely HP IPAQ 4310, is a regular pocket PC which connects
with the server through our university’s campus wireless net-
work, which limits its roaming area to be within our campus. To
make it position-aware, we bundle it with an external 16-channel
GPS receiver, which provides position information through blue-
tooth connection. The server component is implemented in C#
using .Net Framework 1.0. It manages the historical location
data and corresponding indices using MySQL 5.0, and cloaks
mobile clients’ location updates using the proposed techniques
when they request LBSs. In a separate research project, we have

a implemented a location-based service system called ePostit [6].
This system allows one to publish a geo-referenced message,
each associated with a geographic region. A message is deliv-
ered to a user when the user arrive at the corresponding region.
In our experiment, we also plant a number of spatial messages
in our campus and let a user entertain the services provided by
ePostit through the LPAG.

Figure 6: Client devices

Our test of LPAG consists of a location sampling phase, during
which we collect users’ footprints for location depersonalization.
We create a number of client accounts, and carry the devices and
have a walk around the campus, during which the devices makes
periodical location update to the server. After a trajectory is col-
lected, we randomly choose a client from the accounts created
before, assign the trajectory to the client, and save it in the tra-
jectory database in the server. In our testing of LPAG, we specify
a rectangular region in the campus as the public region, and have
a walk in the campus with a mobile device. During the walk,
we send a sequence of queries to the server, each with our cur-
rent position. For each query, the server generates a cloaking
box using the proposed technique, and forwards it to ePostit. In
response, the service provider delivers all the messages whose
bounding boxes overlap with the cloaking box to the server, and
the server forwards to the client only the ones whose bounding
box contains the client’s current position. In the following sub-
sections, we introduce our system’s user interfaces and discuss
the experimental results collected in our field tests.

5.1 Server and Client User Interface
Figure 7 (a) shows the server interface. Every time the server

receives a query from a client, it computes a cloaking box as
the client’s location in requesting the service. Then, the server
displays the cloaking box and the client’s position on the map. As
the example shown in this figure, two clients and their cloaking
boxes are displayed on the campus map.

When a mobile device is powered on, the client finds out the
current position and then connects to the server. After initializa-
tion, the screen shows a local map as its background and marks
the client’s position by a small face icon (see Figure 7 (b)). At
the beginning of a service session, the client can set the public
region by clicking the touch screen to specify its top-left cor-
ner and bottom-right corner, and embed the public region in the
query packet. In the example shown in Figure 7 (b), the client
specifies the library as her public region which is marked by the
red rectangle. In our experiments, the travel bound is set as the
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(a) (b) (c)

Figure 7: Server and client interface

whole campus. Then, during the session, the client can choose
to periodically update her location or manually update whenever
she wants (see Figure 7 (c)).

5.2 Experimental Results
We first examine the system resources used by our code run-

ning on mobile devices.
CPU Utilization: We measure the CPU utilization of our client

code on the smartphone using Xda pps [1], which allows one to
monitor the CPU usage of all the processes running on a smart
device. When the device is idling with no movement, the CPU
utilization is about 1%, indicating that reading GPS position (ev-
ery one second) does not take much computation. When the
client moves around but does not make any location update, we
observe that the CPU utilization is in between 4%− 12%, as our
code redraws the client’s position on the map. When the client
communicates with the server (e.g., location update, message de-
livery), the CPU utilization is in between 10% − 25%.

Memory and Storage: Our client executable is only 120KB
by itself. Since it is built on the .NET Compact Framework 1.0
and OPENNETCF 1.4, additional 2.5MB and 580KB files from
the two platforms are needed, respectively. When running, our
system has a memory footprint of 5.1MB, which is less than 10%
of available main memory on HP IPAQ6515 (57.78MB) and HP
IPAQ4310 (56.77MB). On both devices, our code can run simul-
taneously with other applications such as media player and Inter-
net explorer.

We also examine two performance metrics which affect the
usability of our system.

GPS Accuracy: Because of position deviation of the GPS re-
ceiver, the position reported to the server may be different from
the actual position of a client. If the position deviation is large,
the bounding box computed by the server may not contain the
client’s position, and the client may get the false query result
(missing or downloading wrong messages). In our experiments,
we have tested the accuracy of the two types of GPS in the cam-
pus area. The smartphone we use has a built-in 4-channel GPS,
while the external GPS bundled with the pocket PC has 16 chan-
nels. To calculate the position, a GPS receiver needs to have
signals from at least 4 satellites. In general, the more channels

available, the more accurate position it can compute. Our tests
show that the 16-channel GPS has 5 meters error in average and
8 meters error in maximum. While the 4-channel GPS performs
worse. It has 7 meters error in average and 14 meters error in
maximum. These tests indicate that in the worst case the server
should expand the boundary of the cloaking box by 15 meters
to ensure the cloaking box contains the client’s actual position,
and the bounding box of a message should not be smaller than
15m× 15m.

Response Time: The interval between the time a client sends
a query and the time she receives the query result consists of four
parts: (1) the time it takes to deliver the query from the client
to the server, (2) the time the server uses to compute the cloak-
ing box, (3) the time for the server to send the cloaking box to
the service provider and receive candidate messages from the ser-
vice provider, (4) the time it takes to download the resulting mes-
sages from the server to the client. Our experiments show that the
server computes the cloaking box usually in less than 10 ms. In
addition, the transmission speed between the server and the ser-
vice provider is also very fast (>4MB/s) since they are connected
with a high speed LAN. The bottleneck is the communication be-
tween the client and the server, i.e., part (1) and (4). The smart-
phone we use connects to our server via AT&T’s GPRS, while
the Pocket PC connects to our server via our campus’s WLAN.
In our test, we create a number of messages, some with simple
text messages (1-5KB) and short audio clips (10-30KB), while
the rest with video clips (100-300KB). Our tests show that for
messages with simple text and audio clips, the smartphone and
pocket PC can download them with a delay of less than 1 second
and 3 seconds, respectively; for the messages with video clips,
the pocket PC has a minimal delay of 5 seconds while the smart-
phone has a latency of more than 20 seconds. This study indi-
cates that for cellular phones, our system is more appropriate for
light-weight messages. Fortunately, this will not be a problem as
the development of broadband wireless services provided by the
cellular carriers.

6. RELATED WORK
In addition to [30], another work aimed at location privacy

protection is [32]. The proposed technique lets a service user di-
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rectly download location-based information from a service provider
without having to report her location. It applies the theory of
Private Information Retrieval (PIR) [34] to prevent an adversary
from deriving the user’s location according to the downloaded
data. This scheme, however, requires a client to download about
the square root of the total amount of data stored in the service
provider. This presents a major burden to a mobile client since
the database in the service provider may contain a large amount
of location-based information. Some other related works are as
follows.

Anonymous uses of LBSs: This problem was first investi-
gated in [15]. The proposed solution reduces the accuracy of
location information along spatial and/or temporal dimensions.
When a client requests a service, the proposed scheme computes
a cloaking box that contains the client and at least K − 1 oth-
ers, and then uses this cloaking box as the client’s location to
request the service. If the resolution is too coarse for quality
services, temporal cloaking is applied, i.e., delaying a user’s ser-
vice request. When more mobile nodes come near to the user,
a smaller cloaking area can then be computed. This basic con-
cept has since been improved by a series of work. The work in
[13] considers allowing users to specify their own value of K
and minimizing the size of cloaking boxes, a factor critical for
the quality of location-based services. The techniques proposed
in [25, 22, 7, 31] address the challenges of processing location-
dependent queries with reduced location resolution. Preventing
an adversary from identifying a subject based on her moving pat-
tern was considered in [4] and [26]. The proposed techniques
cloak a client’s position using the neighbors that have been close
to the client for some time period. All these techniques rely on a
central anonymity server, which tracks the movement of mobile
nodes and computes cloaking boxes upon requests. Anonymous
usage of LBSs in fully distributed mobile peer-to-peer environ-
ments was investigated in [9] and [12]. Assuming mobile nodes
trust each other, the proposed techniques let mobile nodes ex-
change location information and collaborate in computing cloak-
ing boxes. More recent work [14, 8] assumes that users’ actual
positions are publicly known. To provide a service requestor K-
anonymity protection, the proposed techniques ensure that her
cloaking box should not only contain at least K users, but also
be shared by at least K of these users. All the above techniques
cloak a user’s location with her current neighbors. As such, they
can support only service anonymity, but not location privacy.

Trajectory perturbation: This problem was first investigated
in [3], and the concept of mix zone was introduced to prevent re-
vealing users’ locations. A mix zone is defined to be a spatial
region in which a mobile node does not report its location. When
there are multiple nodes inside the same mix zone, they exchange
their pseudonyms. After exiting the mix zone, these nodes start
to use new pseudonyms in location updates, making it hard for
an adversary to link incoming and outgoing paths of these nodes.
While this approach relies on a set of pre-defined spatial regions
for pseudonym exchange, the path confusion algorithm proposed
in [19] allows mobile nodes to switch their pseudonyms when
their paths are close to each other, say, within some threshold.
Another strategy they proposed is to ensure that the time inter-
val between two consecutive location reports is long enough so
that each can be considered as an independent event [20]. These
approaches reduce, but cannot prevent, location privacy risks. A
partial trace, or just a single location sample, can be sufficient for
an adversary to identify a user, thus knowing her whereabouts.

Privacy protection in opportunistic sensing and monitoring:
The framework proposed in [23, 11] allows sensor-equipped mo-
bile devices to report context information (e.g., traffic conditions,

pollution reading) from their vicinity without risking their own-
ers’ location privacy. The system partitions the network domain
into many tiles, each being a region that K users typically visit
within a short time interval, and lets each node report its location
at a granularity of tiles. It is unclear, though, how mobile nodes
are updated with the latest tessellation information. Moreover,
the proposed system assumes that each report is an independent
event. In parallel to this work, a system [10] was proposed for
privacy-preserving traffic monitoring based on the concept of vir-
tual trip lines (VTLs). A VTL is a geographic marker that indi-
cates where a vehicle needs to make a traffic report. For privacy
protection, these markers are placed to avoid particularly sensi-
tive areas. Their distances are also made large enough to pre-
vent a user’s consecutive location updates from being re-linked
as a trajectory. This approach cannot be used for location pri-
vacy protection in LBSs because the placement of VTLs is pre-
determined.

7. CONCLUDING REMARKS
We have proposed a feeling-based model for location privacy

protection in location-based services. The model allows a ser-
vice user to express her privacy requirement by requesting that
the location disclosed on her behalf must be at least as popular as
some spatial region such as a shopping mall. Identifying such a
region, called a public region, for privacy configuration is much
more intuitive than specifying a number of K as in the traditional
K-anonymity model. To measure the popularity of a spatial re-
gion, we borrow the concept of entropy from information theory
to take into account not only the number of its visitors, but also
the frequency of their visits. With this model in place, we in-
vestigate the problem of trajectory cloaking and propose a novel
solution that is able to cloak a client’s trajectory on the fly. The
performance of the proposed technique is evaluated using both
simulation and experiment. The prototype we implement can be
used as a location privacy-aware gateway for users to entertain
location-based services.

Our current techniques prevent an adversary from correlating
anonymous location information with restricted spaces such as
home and office to derive who was where at the time where the
service was requested. In addition to such restricted space iden-
tification, other types of attack are likely in reality. One is obser-
vation implication attack. If an adversary has direct observation
over the region where a user locates, the user does not have lo-
cation privacy at that time point. However, the observed location
may be linked to the user’s future movement. Orthogonal to the
observation implication is the exclusiveness attack. If the adver-
sary knows that a user has never visited a certain region, then
any trajectory which traverses through this region cannot belong
to the user. These types of attacks may be prevented by applying
the concept of l-diversity [24, 17] in trajectory cloaking, and we
will investigate this in our future work.
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