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Abstract. Within a privacy-enhancing identity management system,
among other sources of information, knowledge about current anonymity
and about linkability of user’s actions should be available, so that each
user is enabled to make educated decisions about performing actions and
disclosing PII (personal identifiable information).

In this paper I describe a framework for quantification of anonymity
and linkability of a user’s actions for use within a privacy-enhancing iden-
tity management system. Therefore, I define a model of user’s PII and ac-
tions as well as an attacker model. Based thereon, I describe an approach
to quantify anonymity and linkability of actions. Regarding practical ap-
plicability, a third party service for linkability quantification is discussed.

1 Introduction

A privacy-enhancing identity management system1 shall assist a user in using
services (on the Internet) in a least privacy invading way. A basic technique
for this is to be initially anonymous, e.g. by using an anonymity service at
the network layer. So, in principle a user can control that only information
required to perform services is disclosed. Depending on the service, such required
information restricts privacy of the user to some extent.

Within a privacy-enhancing identity management system, a user needs to get
reasonable information about his privacy status in order to make educated deci-
sions about performing actions and disclosing PII (personal identifiable informa-
tion). Among other sources of information, knowledge about current anonymity
or about linkability of certain actions can help a user to assess his privacy.

In this paper a framework for quantification of anonymity and linkability of
a user’s actions is described, with the perspective of using such quantification
within a privacy-enhancing identity management. After outlining related work
on anonymity and linkability measurements in Section 2, a model for users and
actions with regard to transferring PII is introduced in Section 3. Further, an
� Parts of this work have been supported by the Project FIDIS, a Network of Excel-

lence within the EU’s 6th Framework Programme.
1 See e.g. [1] for details on functionality of a privacy-enhancing identity management

system.
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attacker model is defined in Section 4. Based on these models, an approach
for quantifying user’s anonymity and linkability between actions is described in
Section 5. Therefore, the problem of getting information needed for such quan-
tification is discussed in Section 5.1. The basic model does not incorporate the
time aspect, i.e. that user’s attributes may change over time. An enhancement
regarding this issue is discussed in Section 5.5. As quantification of anonymity
and linkability of actions is a highly resource consuming calculation, in Section
5.6 possibilities to make use of third parties for this task are discussed.

2 Related Work

Over the years aspects of anonymity and (un-)linkability evaluation have been
researched mainly with respect to evaluation of anonymity providing services on
the network layer, e.g., mixes [2].

Regarding the connection layer, methods for anonymity evaluation have been
described by Dı́az et al. [3] and Serjantov and Danezis [4]. They describe prop-
erties of anonymity services and derive methods for measuring anonymity. The
scenario used there is not directly comparable with the one I use. Their ap-
proach differs in that they consider a known set of users, whereas in our model
the number of entities (users) is only restricted by the possibility to distinguish
entities by their attributes2. Another difference is the main objective: these au-
thors define a measure of anonymity based on prior knowledge, whereas they
do not define how such knowledge is gathered and organised. Similar to these
papers, I use entropy based measures for anonymity.

Based on [3] and [4], Steinbrecher and Köpsell [5] describe a general informa-
tion-theoretic model for (un-)linkability of similar items (e.g., subjects, messages,
events, actions, etc.) within a system. This model is consistent with ours. In
Section 5.4 I apply methods for linkability measurement described in this paper.

Regarding the application layer, Dı́az et al. [6] describe how entropy can be
used to measure anonymity, but similar to [3], they assume that the number of
users is known. They also assume that the attacker does get more information
about a message than just the data in it, e.g. he can also see which user sends
at a given time. In our model, the attacker only gets to know properties of the
user (entity). Such properties may also be used to model information gained
on the connection level, but our system abstracts from this by only talking
of entities’ attributes which can have different values. Similarly to the other
papers referenced above, they also do not describe how exactly the attacker
gains information, and how this information is aggregated.

Besides the information theoretic approaches discussed above, Hughes and
Shmatikov [7] describe the partial knowledge of a function based on a mathemat-
ical abstraction. They specify anonymity properties using a modular approach.
Their approach can be used independent of the underlying algebra or logic. In
contrast to our approach, their approach is not probabilistic, i.e. items of interest
are considered either fully linkable or not linkable at all.
2 See Definition 6, observer state.
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3 Modelling Users and Actions

In this section I define a model with regards to the entities involved, actions,
data flow and the modelling of the data.

Within the model there is a finite set E of entities3 e ∈ E . An entity represents
a subject out of the real life, like a real person or an artificial person (e.g., legal
person). Entities are considered to be able to communicate by means of computer
networks, mainly the internet. Further, entities have properties, by which entities
can be classified into different subsets of E . For each entity e ∈ E there exists at
least one set of properties by which it can be identified within E . These properties
are also called personal identifiable information (PII).

Actions take place in form of communication between entities. Thereby, a
single action takes place between exactly two entities em and en. In an action at
least one of the communicating entities transmits data to the other one. Data
transmitted during an action is considered to belong together. Further, these data
can contain properties of the originating entity.

3.1 Attributes and Digital Identities

In order to structure the properties of entities transmitted during actions, data
can be modelled as attributes and their values. These terms are defined as follows:

Definition 1 (Attribute Value). An attribute value is a property of an entity.

Definition 2 (Attribute). An attribute A is a finite set of values a ∈ A, and
a special value “not applicable” �.

For example, the attribute “gender” consists of two attribute values “male” and
“female”. In case also legal persons or machines are considered as entities, the
attribute “gender” would get the value “not applicable”.

In addition to information from the content of messages, knowledge gained at
the connection layer can also be modelled by means of attributes.

Within the model, I assume a finite set of attributes. Based on the attributes,
the digital identity can be defined corresponding to the definition in [8].

Definition 3 (Digital Identity). A digital identity is a complete bundle of
attribute values. Thereby “complete bundle” means, that a digital identity com-
prises one value of every attribute.

An entity has at least one digital identity. In case multiple values of an attribute
are properties of one entity e, this entity has multiple digital identities.

Example 1. In Figure 1 relations between attributes, their values and a digital
identity are shown by a concrete example.

3 For reasons of intuitive understanding, I often speak about users throughout this
paper. Regarding the model defined here, a user is an entity.
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Place of residence=“Dresden” Hair colour=“blond” Gender=“female”
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Fig. 1. Attributes with values assigned to a digital identity

The above definition is static, i.e. attribute values within a digital identity cannot
change4.

For describing a general framework for anonymity and linkability quantifica-
tion within the next sections, this static model will be used. In Section 5.5 an
approach for incorporating time properties will be described.

In this model values of attributes are assumed to be discrete. So the model
does not directly consider attributes, where values can be continuous. But to use
such values in the digital world, they must be measured and thereby (considering
a certain fuzziness of the measurement) are transformed into discrete values,
which then are covered by the model given5.

4 Attacker Model

Generally, an entity’s security goal is to find out, whether and to what extent
the disclosure of a set of PII items (values of attributes) helps an attacker to
link the current action to other actions of the entity, or to identify6 the entity.
To clarify this, the attacker and the success criterion of an attack, i.e. linkability
of actions or identification, must be defined.

With respect to privacy-enhancing identity management, the attacker is as-
sumed to be a set of service providers, with which users perform actions. More
formally, the attacker is characterised by the following assumptions with respect
to an entity e:

– The attacker controls one or more communication partners of e, i.e. gets
to know data disclosed by e during actions with these communication part-
ners.

– The attacker has general knowledge about attributes of entities, i.e. has
access to public information services, e.g., phonebook entries, statistical
offices.

Using this information, the attacker tries to identify entities, and tries to find
out, whether different actions can be linked.
4 I.e., with this definition a change of an attribute value of an entity means that the

entity switches to another digital identity.
5 An observer may nevertheless make a difference between attributes resulting from

measurements and attributes defined in a discrete space, e.g., authorisation tokens.
I discuss this issue in Section 5.2 with respect to matching functions for attribute
values.

6 Throughout this document, the term “identified” is used as the opposite of “anony-
mous”.
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Regarding the model defined in Section 3.1 two goals can be specified:

– Observing an action, an attacker wants to find out the digital identity this
action belongs to.

– Observing two actions, an attacker wants to find out whether they originate
from the same digital identity.

In order to quantify anonymity and unlinkability of entities, we need to specify
the relation between entities and digital identities. In order to identify entities,
the set of attributes considered within the system must contain a subset which is
sufficient to identify entities (in the physical world7). Under this assumption, two
cases need to be considered regarding the relation between entities and digital
identities. Either, attributes are defined in a way that an entity has only one
digital identity. In this case, identifying a digital identity means identifying an
entity. In case an entity may have more than one digital identity, the attacker
needs to group digital identities by data identifying the entity (in the physical
world). (See Section 5.3 and 5.4 on how this influences measurements.)

5 Quantification of Anonymity and Linkability

A user wants to know, how his current privacy status is, or how it will be
regarding actions planned given the current circumstances. The focus of this
document is technical. So, privacy is seen here from a technical point of view,
i.e. it is interpreted as degree of anonymity or linkability.

According to [8], unlinkability of actions can defined as follows:

Definition 4 (Unlinkability). Unlinkability of two or more actions means
that within the system, from the attacker’s perspective, these actions are no more
and no less related after his observation than they are related concerning his a-
priori knowledge.

In the scope of this section, “related” means the grade of certainty of the attacker,
that these actions originate from the same entity. Measuring linkability means
determining this certainty.

Anonymity can be defined as follows [8]:

Definition 5 (Anonymity). Anonymity is the state of being not identifiable
within a set of subjects, the anonymity set.

For quantifying anonymity, the information gained from action c needs to be
compared to the information needed to identify a certain entity out of a given
set of entities (the anonymity set).

Within this section I first deal with anonymity and unlinkability with respect
to digital identities as defined in Section 3.1. After that, I discuss anonymity
and unlinkability with respect to entities under the assumption that a set of
data sufficient for identification of entities in the physical world is known.
7 This paper does not aim at defining, which data is sufficient for this purpose. Here,

possibly legal definitions may suffice, but it may vary depending on the attackers
context.



196 S. Clauß

5.1 Sources of Information

Quantification of privacy is not possible without information from outside the
user’s domain. In other words, the user needs to know what an assumed attacker
knows, in order to quantify information contained in disclosed data against this
knowledge. The following example illustrates this:

Example 2. Let’s assume a user disclosing his surname “Sebastian”. Within the
system, there may be many users named “Sebastian”, but this name could also
be unique. Only with knowledge about the other users it is possible to quantify,
how much information is contained in this name.

Privacy quantification would be easy, if there was a “Big Brother”-like source of
information [9], which has all knowledge available within the system. But such
a source of information does not exist in today’s internet8.

So, multiple sources of information need to be taken into account, each having
different partial knowledge about the system. Sources of information can be
distinguished into the following categories:

– The user himself, i.e., the user who wants to quantify his privacy in a certain
situation. The main source of information the user has itself is the history
of data disclosed in past actions.

– Other users. Information from other users can be parts of their disclosure
history.

– Public parties, e.g., public statistical offices, or special services supporting
anonymity and linkability quantification by aggregating data about users in
order to generate specific statistics regarding service providers considered as
attackers.

– Service providers. Usually, it seems strange to assume service providers to
be sources of information, because they are rather seen as the attackers on
privacy, which a user wants to defend against. But the goal of a service
provider can be seen differentiated. On the one hand, his goal is to find out
as much as possible about profiles of users in order to optimise his services
etc. On the other hand, some of the profiled information can be published
for marketing or corporate image purposes, e.g., the total number of users
may be a criterion to decide on the acceptance of a service for users, so it
could be published by the service. There could also be privacy certificates
for which service providers can apply, which are only issued in case certain
information important for user’s anonymity and linkability quantification is
provided.

In order to utilise sources of information for evaluating the privacy situation,
they need to be trusted regarding correctness of information. This also includes
that information needs to be up to date.

In this paper, I will not go into detail how trust in sources of information may
be established. Possibilities here are trust because of legal regulations, because
of personal or third party evaluations, reputation systems, etc.
8 Even that it would make privacy quantification easy, it would also be a perfect

attacker on privacy.
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Correctness of Information. In order to make use of information for eval-
uation of the privacy situation of a user, the information needs to be correct
regarding the following aspects:

– the scope of the information, i.e., it must be clear, about which number, kind
etc. of people a statistic contains information,

– the validity period of the information.

As noted above, there is no general master source of information. So, verifi-
cation of correctness of data is not generally possible. The only possibility for
verification is to have multiple sources of information about the same items of
interest, which can be compared against each other. Then, techniques known
from research on fault tolerance, e.g., majority voting, can be used to decide on
the correct information.

Summary. The above sections make clear, that evaluation of a user’s privacy
exclusively bases on sources of information, which can be more or less trusted by
the user. In this context, the evaluation can never be objective and universal. It
will always be a subjective view, and under realistic circumstances, it will nearly
never be possible to exactly get to the same results as an (assumed) attacker.

As a consequence of this, a technical evaluation of privacy should not be used
as a automatic criterion to base decisions about actions on, but it can give hints.

5.2 A Method for Calculation

In this section, a method for calculation of anonymity and linkability measures
is described in order to show, how information from the different sources could
be aggregated. Further, this method forms the basis for enhancements described
in Section 5.5.

Aggregating Input Data. The mathematical model sketched here enables
to use entropy metrics for determining an anonymity set size for a given set of
disclosed data items. Here, only the aspects of the model are described, which
are needed to describe the calculation anonymity and linkability metrics. A more
detailed description can be found in [10]. This model operates on static digital
identities as defined in Section 3.

By observing actions an observer gets a limited insight into user’s PII and
into relations between PII items. The observer can collect this information, and
conduct any desired statistical analysis on them. With a growing number of
observations the information on probability distributions of the digital identities
gets more exact9. I define the knowledge of an attacker which he gained by
observations in form of the observer state:

Definition 6 (Observer State). The State ZX of an observer X is a triple
(I, h, g), where:
9 “exact” here means exact with respect to the observation. Observations may never-

theless yield incorrect information (see Section 5.1).
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– I is the set of all digital identities possible.

I = A1 × A2 × . . . × An

– h : I �→ IR is a function, which assigns a probability to every digital identity,
i.e., (∀i ∈ I.0 � h(i) � 1)

– g is the number of observations leading to this state.
– the sum of all probabilities is 1.

∑

(I)

h(i) = 1

h(i) denotes the probability that within the set I of all possible identities the
identity i is observed by the attacker. When the attacker observes an action of
a user, the probability of the identities matching to the observation (i.e., the
suspects with respect to the observation) is raised, whereas the probability of
all other identities is lowered. After defining observations, I specify a method for
matching identities and observations.

Definition 7 (Observation). An observation is a (possibly incomplete) bundle
of attribute values. Such a bundle contains at most one value per attribute. The
set B of all possible observations is the cross product of all attributes with an
additional element “not observed” ⊥.

B = (A1 ∪ ⊥) × (A2 ∪ ⊥) × . . . × (An ∪ ⊥)

Intuitively, this means that during actions a user discloses PII. The observer
observes this PII and gets a more and more refined view on the digital identities
and by that on the users.

Within the set of all possible digital identities an observer can separate suspect
digital identities with respect to an observation from non-suspect digital identi-
ties. The set of suspects related to an observation can be defined as follows:

Definition 8 (Suspects). The set of suspects Vb related to an observation
b = (x1, .., xn) contains all digital identities i = (x′

1, .., x
′
n), whose attribute

values are either equal to attribute values of b or are not contained in b.10

Vb = {i|xk ∈ {x′
k, ⊥}, k = 1, .., n} (1)

As stated above, the observer “learns” by observations. The following definition
formalises this learning process:

10 The matching function “equality” used here is a simple example. This makes only
sense, if attribute values are discrete and not related to each other. If this is not the
case, e.g., if measuring faults for originally continuous attribute values (see Section
3.1) need to be taken into account, other matching functions should be used which
reflect such properties of attributes.
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Definition 9 (Observer State Update). Let b ∈ B be an observation and Z
a set of observer states. An observer state update δ : Z × B → Z constructs a
new observer state from a given state and an observation.

These definitions are a framework for formalising concrete observations and sta-
tistical analysis based on digital identities. In order to not restrict this model
to passive (observing only) attackers, it is intentionally not defined how an ob-
servation is done. So, an attacker may observe messages, but may also actively
insert or fake messages in order to observe users’ reactions.

Based on the above definitions a statistical observer model is defined as follows:

Definition 10 (Statistical Observer Model). A statistical observer model
of an observer X comprises a set I of digital identities, a set of observations B,
a set ZX of observer states and a function δ, which derives new observer states
from previous states and observations.

The statistical observer model specifies the observer’s knowledge in form of sta-
tistics about digital identities together with a method for aggregating newly
gained knowledge. This is an abstract definition, as it leaves open how actu-
ally the aggregation of new observations influences the probabilities of digital
identities.

In order to actually perform calculations within this framework model, a con-
crete model can be defined as follows11:

Let I be a set of digital identities and B the set of all observations possible.
The set of states Z is defined inductively. First, I define the initial state, in which
the attacker did not do any observations. For the initial state Z0 = (I, h, g) it
shall hold, that g = 0 and (∀i ∈ I.h(i) = 1

|I|).
Now I specify how an observation actually changes the probabilities of the

digital identities. A function δ : Z × B → Z derives a new state Zk+1 =
(I, hk+1, gk+1) from a previous state Zk = (I, hk, gk) and an observation b ∈ B
as follows:

hk+1 : i �→ hk(i) ∗ gk + x

gk + 1
(2)

x =
{ 1

|Vb| iff i ∈ Vb

0 otherwise
gk+1 = gk + 1 (3)

This intuitively means, that first each observation gets an equal “weight” 1.
Then, this “weight” is divided by the number of suspects of this observation. By
doing that, more significant observations (i.e., observations containing values of
more attributes) get a bigger influence on the probability of the suspect identities

11 The concrete model described here is an example, in order to show a possibility how
observations can be aggregated in a meaningful way into a statistical observer model.
There may exist other concrete models.
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than less significant ones. Further, the “weight” of the observation is set into rela-
tion to the number of observations already aggregated, so that every observation
already aggregated has the same overall influence on the probabilities.

In fact, the observer model defined above sums up relative frequencies. With a
growing number of observations, it can be assumed that the relative frequencies
converge to probabilities. By induction over g, it can be shown, that function h
always has the properties of a probability distribution, i.e.,

∑
(i∈I) h(i) = 1 and

h(i) is not negative12.
A useful feature of this observer model is the fact, that two observer states can

be aggregated without the need to add every single observation of one state to the
other. So, observer states of different sources of information can be aggregated
easily into a general state:

Definition 11 (State Aggregation). Two states ZA = (I, hA, gA) and ZB =
(I, hB, gB) based on the same set of digital identities are aggregated to a new
state ZA ∪ ZB = (I, hC , gC) as follows:

gC = gA + gB (4)

hC : i �→ gAhA(i) + gBhB(i)
gC

(5)

For a proof the correctness of state aggregation see [10].

5.3 Quantifying Anonymity

As described in Section 2, Shannon entropy [11] is often used as a metric for
anonymity. Given an observer state Z, the Shannon entropy H∅ of an informa-
tion b can be computed.

Definition 12 (Shannon entropy). Let b be an observation and Vb a set of
suspects related to observation b. The Shannon entropy of b related to a state Z
is the Shannon entropy of the suspects Vb.

H∅ = −
∑

(v∈Vb)

p(v|b) log2 p(v|b) (6)

p(v|b) =
p(v ∧ (

∨
(w∈Vb) w))

p(
∨

(w∈Vb) w)
(7)

=
h(v)∑

(i∈Vb) h(i)
(8)

Thereby, h(i) denotes the probability of the identity i within the observer state Z.

12 See [10] for the proof.
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Given a Shannon entropy |S| = 2H∅ denotes the equivalent size of a uniformly
distributed anonymity set S.

I first evaluate the case that a user has only one digital identity. The Shannon
entropy H∅ specifies the average amount of information needed in addition to
b in order to uniquely identify a digital identity. In case of a user evaluating his
anonymity, he usually knows his digital identity. So, it may be more useful for
him to compute the amount of information needed to identify him, i.e., his digital
identity. This so called “individual anonymity” can be computed as follows:

H(i) = log2 p(i|b) (9)

From the viewpoint of a single user, individual anonymity is the most accurate
anonymity measure.

In case a user has multiple digital identities, this measure can also be used, but
before calculating entropy all suspect digital identities belonging to the same user
need to be grouped into one “personal” digital identity. This grouping is done by
summing up their probabilities. This grouping needs to be done by information
considered to be sufficient to identify users (in the physical world.)13 The entropy
is then calculated based on the “personal” digital identities.

5.4 Quantifying Linkability of Actions

Regarding linkability, it is interesting for a user, to what extent it can be deter-
mined that actions have been done by the same user. More formally, there are
two actions c1 and c2 which have been observed in the form of observations b1
and b2.

According to [5], linkability of items of interest can be measured regarding
equivalence classes, for which (after observations) an attacker has partial know-
ledge about which items of interest belong to which class.

Applied to the model used here, the equivalence classes are the digital identi-
ties. By an observation of an action, suspect digital identities can be determined
corresponding to the observation of this action (see Definition 8), i.e., informa-
tion about association of items of interest (actions) to equivalence classes (digital
identities) is gained.

Regarding observations b1 and b2, the suspect sets are Vb1 resp. Vb2 . Within
a set of suspects, a digital identity has the probability p(v|b), which is derived
from the current observer state as shown in equations (7) and (8).

The probability pr, that actions c1 and c2 belong to the same digital identities,
can be computed as follows:

pr =
∑

(v∈Vb1∪b2 )

p(v|b1) · p(v|b2)

Thereby, Vb1∪b2 denotes the set of digital identities, which are contained in both
sets Vb1 and Vb2 . According to [5], the probability p¬r, that the actions c1 and
c2 do not belong to the same digital identity is 1 − pr.
13 See also Section 4.
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From probabilities pr and p¬r a degree of linkability d can be computed by
using the Shannon entropy [5]:

d := H(pr, p¬r) = −pr · log2 pr − p¬r · log2 p¬r

The degree of linkability d specifies, how much an observer has learnt about
the relation between c1 and c2 from observations Vb1 and Vb2 , taking also into
account the a-priori knowledge about the digital identities derived from the
current observer state.

If pr > p¬r, the degree denotes the certainty of the observer, that actions c1
and c2 belong to the same digital identity, otherwise it denotes the certainty of
the observer that the actions do not belong to the same digital identity.

In case a user has only one digital identity, linkability related to a digital
identity is the same as linkability related to a user. In case a user may have more
than one digital identity, before actually calculating linkability the suspect digital
identities belonging to the same user first need to be grouped into “personal”
digital identities, as described in Section 5.3 for the same purpose. Then, the
calculation of linkability can be performed as shown above, but based on the
“personal” digital identities.

5.5 Incorporating Time

As described in Section 3.1, the above model does not consider changes of at-
tribute values of users. But for a system more closely modelling the real world
this is an important feature, because many attributes of users can be subject to
change over time, e.g., the family name may be changed by marriage.

In order to also consider timely changes of attributes within a digital identity,
I define the dynamic digital identity as follows:

Definition 13 (Dynamic Digital Identity). A dynamic digital identity is a
bundle of functions fA(t) : f(t) → a for each attribute A. This means, that for
each attribute a function exists, which determines the value of the attribute at a
given point in time t.

A (static) digital identity can be seen as a snapshot at a point in time t of
a dynamic digital identity. At a given point in time, the digital identity of an
entity comprises all information, which can be transmitted by the entity during
an action, so (regarding data to be possibly communicated to other entities) an
entity can be seen as an incarnation of a particular digital identity.

For an observer, this means that observations “grow older”, i.e., an observation
matches a set of digital identities only at the time of the observation. For the
knowledge base of the observer, the observer state, this means that probabilities
of digital identities need to be adjusted according to time by using the functions
fA(t) of the digital identity. In most cases, the observer will not fully know
this function, so he needs to estimate it. This leads to growing uncertainty with
regards to older information.
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As this “ageing” does not change the structure of the observer state, quan-
tification of anonymity and linkability of actions can be performed in the same
way as described above for the static model.

So, in general the observer state model described in Section 5.2 can be en-
hanced to incorporate time. For use for anonymity and linkability quantification
within a real system, specific time dependent functions need to be defined for
the single attributes.

5.6 Linkability Quantification Service

Despite getting enough and reliable information14, the major problem with link-
ability quantification is resource usage. Detailed quantification needs a major
amount of storage as well as computing power, depending on the number of
attributes and attribute values to consider. Especially if considering e.g., mo-
bile phones or PDAs as devices of the user, both storage and computing power
are very much limited. Even if calculation within the general observer model
described above could be optimised to some extent, this will usually exceed
resources available on such smaller devices.

A usual way to address such a problem would be to introduce a third party
linkability quantification service (LQS), which could compute anonymity and
linkability quantification on behalf of users.

In the following I will go in some more detail about intended functionality
of such a service, and especially on privacy and security risks introduced by an
LQS and possibilities to solve them.

Basic Functionality. Basically, the service has two functions:

– Answering user requests for linkability computation.
– Gathering base data needed for linkability computation, i.e. the data de-

scribed in Section 5.1. This data can be aggregated to an observer state as
described in Section 5.2.

The first function is processed in the following way:

Input: The user inputs a request for (pre-)computation of measurements of his
anonymity or linkability of actions. Such a request consists of one or more
sets of data to be disclosed or already disclosed, relative to which anonymity
or linkability can be quantified.

Processing: Measurements are computed using the base data aggregated from
sources of information.

Output: The service outputs the measurement results, together with an ar-
bitrary set of details regarding the computation, e.g., a description of the
sources of information used.

In general, a LQS is just a linkability quantification done by a TTP. For the
linkability quantification calculation, in terms of input and output, it is rather
straight forward to compute it remote instead of local, but as the TTP running
the LQS is not under the user’s control, security and privacy issues arise.
14 See Section 5.1 for details.
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Security and Privacy Issues. Without countermeasures, the user needs to
trust in the LQS for the following reasons:

1. Users need to trust for correct computation of linkability measurements by
the LQS.

2. Users need to trust, that the LQS does not disclose their action data to
third parties. This is a rather important issue, as the LQS essentially ag-
gregates the user profiles, which should be prevented from being known to
the attacker. Additionally the LQS gets to know data, which a user will po-
tentially not disclose to the attacker. It is only input to LQS for computing
linkability measures for the potential case of a disclosure. So, the LQS is a
major goal for attackers which want to get user profiles.

The first problem can be solved by using redundant LQS’ in order to detect
wrong computation by techniques known from research on fault tolerance, e.g.,
majority voting.

For solving the second problem technically, an approach would be needed, so
that the LQS can compute linkability metrics without getting knowledge of the
input data. Basically, a secure-function-evaluation15-like approach using multiple
instances (i.e., no single instance alone has enough knowledge to reconstruct the
user profiles) could help, but this is a rather theoretic approach, as this adds a
huge amount of extra resource usage to the service.

Besides this, legal regulations could help to restrict misuse, but on the other
hand, to avoid the need to utilise such regulations is a goal of linkability com-
putation at the user’s side.

So, even if such a service would be desirable to save resources at the user’s
device, more research needs to be done on possibilities to implement desired
security features to it.

6 Summary

In this paper I describe a framework to quantify anonymity and linkability of
actions for use within a privacy-enhancing identity management. An appropriate
attacker model is defined, and an approach for computing such quantification
based on observations of user’s actions is proposed. Further, I discuss an en-
hancement to the basic approach regarding time dependency of observations.
The problem of getting enough information to do the quantification is analysed.
Regarding the problem of high resource consumption for quantification compu-
tations, I analyse possibilities for utilising third party services especially with
respect to privacy and security requirements.

Further research needs to be done regarding optimising computations with
respect to resource consumption and regarding matching functions for attribute
values depending on attribute characteristics. Another topic for further research
is how to secure privacy of PII when using third party services for quantification
of anonymity and linkability.
15 e.g. [12].
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5. Steinbrecher, S., Köpsell, S.: Modelling unlinkability. In Dingledine, R., ed.: Pro-
ceedings of Privacy Enhancing Technologies workshop (PET 2003). Number 2760
in LNCS, Springer-Verlag (2003) 32–47

6. Dı́az, C., Claessens, J., Seys, S., Preneel, B.: Information theory and anonymity.
In: Proceedings of the 23rd Symposium on Information Theory in the Benelux,
May 29-31, 2002, Louvain la Neuve, Belgium, Werkgemeenschap voor Informatie
en Communicatietheorie (2002)

7. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: A modular
approach. Journal of Computer Security 12(1) (2004) 3–36

8. Pfitzmann, A., Hansen, M.: Anonymity, unlinkability, unobservability, pseudonymi-
ty and identity management - a consolidated proposal for terminology. Version 0.27
at http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.27.pdf
(2005) Version 0.8 in: Hannes Federrath (Ed.): Designing Privacy Enhancing
Technologies; Proc. Workshop on Design Issues in Anonymity and Unobservability;
LNCS 2009; 2001; 1-9.

9. Orwell, G.: Nineteen Eighty-Four. Martin Secker & Warburg (1949)
10. Clauß, S., Schiffner, S.: Anonymität auf Anwendungsebene. In Dittmann, J.,

ed.: Proceedings of Sicherheit 2006. Volume P-77 of Lecture Notes in Informatics.,
Bonn, GI (2006) 171–182 (german).

11. Shannon, C.: A mathematical theory of communication. The Bell System Technical
Journal 27 (1948) 379–423

12. Micali, S., Rogaway, P.: Secure computation. In: Crypto ’91. Number 576 in LNCS,
Springer Verlag (1992) 392–404

http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.27.pdf

	Introduction
	Related Work
	Modelling Users and Actions
	Attributes and Digital Identities

	Attacker Model
	Quantification of Anonymity and Linkability 
	Sources of Information
	A Method for Calculation
	Quantifying Anonymity
	Quantifying Linkability of Actions
	Incorporating Time
	Linkability Quantification Service

	Summary


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




