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ABSTRACT
Recognition of activities of daily living (ADLs) is an enabling
technology for several ubiquitous computing applications. In
this field, most activity recognition systems rely on super-
vised learning methods to extract activity models from labeled
datasets. An inherent problem of that approach consists in
the acquisition of comprehensive activity datasets, which is
expensive and may violate individuals’ privacy. The problem
is particularly challenging when focusing on complex ADLs,
which are characterized by large intra- and inter-personal vari-
ability of execution. In this paper, we propose an unsupervised
method to recognize complex ADLs exploiting the semantics
of activities, context data, and sensing devices. Through on-
tological reasoning, we derive semantic correlations among
activities and sensor events. By matching observed sensor
events with semantic correlations, a statistical reasoner formu-
lates initial hypotheses about the occurred activities. Those
hypotheses are refined through probabilistic reasoning, exploit-
ing semantic constraints derived from the ontology. Extensive
experiments with real-world datasets show that the accuracy
of our unsupervised method is comparable to the one of state
of the art supervised approaches.
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INTRODUCTION
Knowledge about the activities carried out by individuals
is a requirement for several ubiquitous computing applica-
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tions [9]. Indeed, domains of activity-aware computing range
from smart homes and e-health, to gaming, smart manufactur-
ing, pervasive advertising, and smart cities. In particular, the
rapid growing of the population age in industrialized societies
advocates activity-aware systems to support active and healthy
ageing. The goal of such systems is to early recognize health
issues and prolong independent life [10, 24]. Hence, many
ubiquitous healthcare systems have been proposed, which
monitor activities of daily living (ADLs) at home through
unobtrusive sensors and artificial intelligence methods.

Currently, most activity recognition systems rely on supervised
learning applied to datasets of activities and sensor data [2,
3]. Supervised learning proves to be effective in recognizing
activities characterized by specific postures or motions, such
as for physical activities. However, its applicability to complex
ADLs (e.g., cooking, cleaning, and dressing) is questionable.
On the one side, the way in which individuals perform ADLs
strongly depends on current context conditions. Hence, a
large dataset of ADLs should be acquired to capture most
execution patterns in different situations. On the other side,
activity execution patterns are strongly coupled to the individ-
ual’s characteristics and home environment, and the portability
of activity datasets is an open issue [8]. As a consequence,
ideally one extensive ADLs dataset should be acquired from
each monitored individual. Unfortunately, acquiring ADLs
datasets is very expensive in terms of annotation costs [4, 25].
Besides, activity annotation by an external observer, by means
of cameras or direct observation, violates the user’s privacy.

To overcome that problem, other works relied on knowledge-
based activity models, manually specified through logic lan-
guages and ontologies. Those models are matched with ac-
quired sensor data to recognize the activities [18, 33, 6]. How-
ever, the main shortcoming of that approach relies in the rigid-
ity of specifications. For instance, complex ADLs are often
specified through temporal sequences of simpler actions [14].
Nevertheless, it is unfeasible to enumerate all the possible
sequences of actions describing a complex ADL.

In this work, we propose a method to overcome the limitations
of both approaches. First, our method is unsupervised: we do



not need to acquire expensive activity datasets. Second, our
activity model is based on general semantic relations among
activities and smart-home infrastructure; hence, we can seam-
lessly reuse our model with different individuals and in dif-
ferent environments. Specifically, we defined an OWL 2 [12]
ontology to formally model the smart home environment and
the semantics of activities. We rely on ontological reasoning
to derive necessary conditions about the sensor events that
must occur during the execution of a specific activity in the
current environment. This also enables to extract semantic
correlations among fired sensor events and executed ADLs.
Based on the semantic correlations, a statistical algorithm
pre-processes sensor events to identify candidate activity in-
stances, i.e., initial hypotheses about the start and end time
of occurred activities. Finally, we translate our ontological
model in a Markov Logic Network (MLN) [30], and perform
probabilistic reasoning to refine candidate activity instances
and check their consistency. Our MLN model is carefully
crafted to support the recognition of interleaved activities.

We performed extensive experiments with real-world datasets
of ADLs performed by 22 individuals in two different smart
home environments. Results show that, even using a smaller
number of sensors, the performance of our unsupervised
method is comparable to the one of existing methods that
rely on labeled activity datasets.

The main contributions of our work are the following:

• we propose an unsupervised method that overcomes the
main drawbacks of supervised and specification-based ap-
proaches;

• we rely on general semantic properties that can be seam-
lessly reused with different individuals and environments;

• we recognize interleaved activities, while many other works
are restricted to sequential ones.

The paper is structured as follows: After presenting related
work and preliminary notions, we introduce our model and
system. Then, we describe our ontological and probabilistic
activity recognition methods in detail, followed by the experi-
mental evaluation. We conclude with final remarks and future
research directions.

RELATED WORK
Activity recognition methods in ubiquitous computing can be
broadly classified in two categories: learning-based methods
and specification-based methods [35].

Learning-based methods rely on a training set of sensor data,
labeled with executed activities, and supervised learning algo-
rithms to build the activities’ model. Physical activity recog-
nition systems are mainly based on data acquired from body-
worn accelerometers [2, 3, 32]. The same approach is extended
with the use of environmental data acquired from other sensors
(e.g., microphones) to recognize ADLs [17, 19]. Observations
regarding the user’s surrounding environment (in particular,
objects’ use), possibly coupled with body-worn sensor data,
are the basis of other activity recognition systems [13, 29].
However, since training data is hard to acquire in realistic envi-
ronments, systems relying on supervised learning are prone to

serious scalability issues the more activities and the more con-
text data are considered. Moreover, datasets of complex ADLs
are strongly coupled to the environment in which they are ac-
quired (i.e., the home environment and the sensors setup), and
to the mode of execution of the specific individual. Hence, the
portability of activity datasets in different environments is an
open issue [8]. In this work, we propose a method to recognize
complex ADLs through semantic reasoning, even without the
use of training data. However, when training data is available,
we can exploit it to mine low-level dependencies between sen-
sor events and performed activities. Those relationships are
used by our probabilistic ontological reasoner to identify oc-
curred activities. The combination of specification-based and
probabilistic approaches has also been investigated in other
fields of Artificial Intelligence [11]. However, our method
supports the recognition of interleaved activities, while most
existing techniques are restricted to sequential ones. We target
the recognition of interleaved activities explicitly by consider-
ing this aspect in our MLN model, where sensor events can be
assigned to overlapping activity instances.

Unsupervised learning algorithms build activity models rely-
ing on a training set of unlabeled sensor data. Some methods
analyze textual descriptions of activities mined from the Web
in order to obtain correlations among used objects and activi-
ties [23, 34]. In our work, we mine not only correlations, but
also necessary conditions about sensor events that must be
observed during the activity execution. Moreover, we derive
correlations and necessary conditions considering the actual
environment where activities are executed, while methods
based on Web mining derive generic correlations. An unsuper-
vised method that is close to our approach has been proposed
by Ye et al. [37], where ontologies are used to derive semantic
similarity between sensor events. This similarity is used to
segment sensor data, obtaining sequential activities’ patterns
used to train a clustering model. With respect to that work,
our method is totally independent from the data and it also
considers interleaved activities.

Specification-based methods rely on knowledge-based defini-
tions of the characteristics and semantics of complex activities.
These are matched with available sensor data to recognize
the current activity. Those definitions are usually expressed
through logical axioms, rules, or description logics [18, 27,
33]. Background knowledge of ADLs has been used to create
activity models, used to recognize ADLs based on the similar-
ity of sequences of sensor events to the general models [15].
Ontological reasoning has also been proposed to perform dy-
namic segmentation of sensor data [20, 22, 36] or to refine
the output of supervised learning methods [26]. Defeasible
reasoning has been adopted to enhance existing sequential
activity recognition systems by detecting interleaved activi-
ties and handling inconsistent or conflicting information [21].
Further, probabilistic description logics have been used to
recognize ADLs considering the variability of activity execu-
tion [14]. However, those works rely on rigid assumptions
about the simpler constituents of activities. Hence, while the
specification-based approach is effective for activities charac-
terized by a few typical execution patterns, it is hardly scalable
to the comprehensive specification of complex ADLs in dif-



ferent contexts. On the contrary, in this work we rely on
general semantic relations among activities and smart-home
infrastructure, which are fine-tuned to the current context.

PRELIMINARIES
In this section, we introduce preliminary notions about de-
scription logics and Markov Logic Networks.

Description logics and formal ontologies
In computer science, description logics (DLs) [1] have
emerged as the state-of-the-art formalism to represent ontolo-
gies. These enable to formally define concepts of a domain
of interest, their properties, and the relationships among con-
cepts. In this work, we use an ontology to formally define
the semantics of activities, sensor events, and context data.
Moreover, DLs support ontological reasoning, which allows
to verify the consistency of the knowledge base, and to infer
additional information from existing facts. The formalism of
choice is typically OWL 2 [12]. A knowledge engineer can
model the domain of interest by means of classes, individuals,
properties of individuals, and relationships among individuals.
Several operators can be used to declare complex definitions
based on simpler ones, including operators for conjunction,
disjunction, negation, and universal and existential quantifi-
cation. For instance, the activity PREPARINGHOTMEAL can
be defined based on the definitions of PREPARINGMEAL and
PREPARINGCOLDMEAL:

PREPARINGHOTMEAL ≡ PREPARINGMEALu
¬PREPARINGCOLDMEAL

In this work, we also exploit the following operators:

• Qualified cardinality restriction restricts the class member-
ship to those instances that are in a given relation with a
minimum or maximum number of other individuals of a
given class. For instance, the following axiom states that
PreparingHotMeal requires the use of at least one instru-
ment to cook food:

PREPARINGHOTMEAL v ACTIVITYu
≥ 1 REQUIRESUSAGEOF.COOKINGINSTRUMENT

• Composition of properties. OWL 2 supports a restricted
form of property composition ◦. For instance, the following
axiom states that if a person is in a given apartment, and she
is executing a given activity, then that activity is executed
in that apartment:

EXECUTESACT− ◦ ISINLOCATION v ACTISEXECUTEDINLOCATION

Note that EXECUTESACTIVITY− denotes the inverse of
EXECUTESACTIVITY.

Formally, a DLs knowledge base is composed by a pair
〈T ,A 〉. The TBox T constitutes the terminological part
of the knowledge base. The TBox is composed of a set of
axioms C v D or P v R (inclusions) and C ≡ D or P ≡ R
(equality), where C and D are classes, and P and R are object
properties. An axiom C v D is satisfied by an interpretation
I when CI ⊆ DI . An interpretation I satisfies a TBox T
when I satisfies all the axioms of T .

The ABox A is the assertional part of the knowledge base.
The ABox is composed of a set of axioms of the form
x : C and 〈x,y〉 : R, where x and y are individuals, C is a
class, and R is an object property. For instance, “MARY :
ELDERLYPERSON” denotes that Mary is an elderly person and
“〈 MARY, APARTMENT23 〉 : LIVESIN” represents that Mary
lives in Apartment23. Axioms x : C and 〈x,y〉 : P are satisfied
by an interpretation I when xI ∈CI and 〈xI ,yI 〉 ∈ PI ,
respectively. An interpretation I satisfies an ABox A when
I satisfies all the axioms of A . An interpretation I that
satisfies both the TBox T and the ABox A is called a model
of 〈T ,A 〉. DLs support several reasoning tasks. In particular,
we rely on the following ones:

• Satisfiability: a class C is satisfiable with respect to a TBox
T if there exists a model I of T such that CI is non
empty. We execute this reasoning task to check the consis-
tency of our ontological model.

• Property fillers retrieval: retrieving all the instances in A
that are related to a given individual with respect to a given
property. We execute this reasoning task to derive semantic
correlations among activities and sensor events.

Markov Logic with numerical Constraints
In addition to purely logical or probabilistic approaches, a
Markov Logic Network provides many benefits and allows
to handle uncertainty, imperfection, and contradictory knowl-
edge. These characteristics make it an appealing tool to reason
with sensor data and ADLs. Technically, a Markov Logic
Network (MLN) M is a finite set of pairs (Fi,wi),1≤ i≤ n,
where each Fi is an axiom in function-free first-order logic
and wi ∈ R [30]. Together with a finite set of constants
C = {c1, ...,cn} it defines the ground MLN MC , i.e., the MLN
in which axioms do not contain any free variables. This com-
prises one binary variable for each grounding of Fi with weight
wi. Hence, a MLN defines a log-linear probability distribution
over Herbrand interpretations (possible worlds)

P(x) =
1
Z

exp

(
∑

i
wini(x)

)
(1)

where ni(x) is the number of satisfied groundings of Fi in the
possible world x and Z is a normalization constant.

In a previous work, we extended MLN with numerical con-
straints resulting in a formalism denoted MLNNC [16, 5]. In
this work, we use this extension to reason on the temporal
domain of activities and sensor events. The constraints are
predicates of the form θ ./ ψ , where θ and ψ denote variables,
numerical constants, or algebraic expressions (that might con-
tain elementary operators). In this context, the binary operator
./ returns a truth value under a particular grounding.

DEFINITION (MLNNC). A numerical constraint NC is
composed of numerical constants (e.g., elements of N, I), vari-
ables, elementary operators or functions (+,∗,−,÷,%,

√
),

standard relations (>,<,=,,,≥,≤), and Boolean operators
(∧,∨). An MLNNC is a set of pairs (FCi,wi) where FCi is a
formula in first-order logic that may contain a NC and wi is a
real number representing the weight of FCi.
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Figure 1. The time-lines illustrate the relations between an activity in-
stance, performed operations, and the involved sensor events. Sensors
detect interaction with items and furniture, or presence in a certain area.

EXAMPLE 1. Using MLNNC it is possible to represent the
axiom: two events “turning on the oven” cannot belong to the
same instance of meal preparation if their temporal distance
is more than two hours:
{∀ se1, se2, ai1, ai2, t1, t2 : event(se1,

′oven′, t1) ∧
event(se2,

′ oven′, t2)∧occursIn(se1,ai1)∧occursIn(se2,ai2)
∧ NC(t1, t2)⇒ ai1 , ai2, NC(t1, t2) = |t1− t2|> 120}.
Maximum a posteriori (MAP) inference is the task of finding
the most probable world given some observations also referred
to as evidence. Given the observed variables E = e, the MAP
problem aims to find an assignment of all non-evidence (hid-
den) variables X = x such that I = argmax

x
P(X = x | E = e).

Based on the MLN of sensor events and semantic constraints,
we apply MAP inference to derive the most probable activities.

MODEL AND SYSTEM OVERVIEW
We assume a smart home instrumented with sensors to detect
interactions with items and furniture, context conditions (e.g.,
temperature), and presence in certain locations. We denote by
activity class an abstract activity (e.g., cooking and cleaning),
and by activity instance the actual occurrence of an activity
of a given class during a certain time period. In this context,
Figure 1 illustrates the relation between recorded sensor events
and an activity instance. Hence, during the execution of ac-
tivity instance ai1 (preparing dinner), the subject executes
the operations op1 (opening the silverware drawer) and op2
(turning on the microwave oven). Supposing that sensors are
available to detect these operations, op1 and op2 generate two
sensor events se1 and se2, whose timestamp corresponds to
the time of the respective operation.

Based on the observation of a set of timestamped sensor events,
the goal of the activity recognition system is to reconstruct
the most probable activity instances that generated them. As
shown in Figure 2, we achieve this goal by assigning each
event sei to the activity instance that most probably generated
it. This approach allows us to recognize interleaved activities,
as it is the case for ai2 and ai3 (the subject temporarily inter-
rupts her meal to take medicines). In the following, we outline
our model, architecture, and the individual components.

Ontological model
We have defined the semantics of activities and operations
in an OWL 2 ontology. In the following, we consider

Activities timeline time

Preparing dinner

Eating

Taking medicines

Sensor events timeline time

ai1
ai2 ai2

ai3

se1 sekse2 ...

Figure 2. Reconstruction of the activity instances generating a set of
sensor events. The individual sensor events, their relations, and depen-
dencies indicate by which activity they were generated.

owl:Thing

Artifact Activity Operation

  Sensor Device Individual Social

Personal Physical

PreparingMealChooseOutfit Sleeping

:requiresUsageOfInstrument

PreparingMeal

:sensesUsageOf

Figure 3. Excerpt of our ontology. The dashed lines represent a subClas-
sOf relation where the upper is the parent of the lower class. In addition,
the individual classes have relations that describe dependencies.

A = {ac1,ac2, . . . ,ack} as the set of activity classes. Further,
an instance aii of an activity class ac j ∈A represents the occur-
rence of ac j during a given timespan. The activity instance is
associated to the operations executed to perform it, where the
start and end time of instances of different activities can over-
lap. This means that the head and the tail of a sub-sequence
of sensor events sei could be assigned to a specific instance
a j, while the sensor events that occur between them may be
assigned to another instance ak (see Figure 2). This enables us
to explicitly handle interleaved activities.

Figure 3 illustrates an excerpt of our ontology, which models
a complete home environment. In addition, it also covers ax-
ioms for each activity class that describe dependencies and
conditions. In particular, we express necessary conditions
for a set of operations to be generated by an instance of that
class, according to the activity semantics. For example, the
operations generated by an instance of preparing hot meal
must include an operation using a cooking instrument. The
ontology also models sensors and the operation that they de-
tect; e.g., a power sensor attached to the electric stove detects
the operation turning on the stove. In turn, this operation is
a subclass of using a cooking instrument. The ontology care-
fully describes these kind of relations and, through ontological
reasoning, we can derive constraints like the following: “since
the stove is the only cooking instrument in the home, and a
sensor is available that detects the usage of the stove, then
each instance of preparing hot meal executed in the home
must necessarily generate an event from that sensor”.

Besides, other necessary conditions regard time and location.
This includes constraints on the duration of the activity in-



stance, and dependencies between activity and location. As
explained in the next section, ontological reasoning is also
used to infer probabilistic dependencies among sensor event
types and classes of executed activities; we denote them as
semantic correlations. Our ontology is publicly available1.

Architecture
Figure 4 shows an overview of our system. The smart-home
monitoring system collects raw events data from the sensor net-
work, including environmental, presence, and contact sensors.
The SEMANTIC INTEGRATION LAYER applies simple pre-
processing rules to detect operations from raw sensor events.
For example, if at time t the fridge door sensor produces the
raw event open, then the operation at t is opening the fridge.
We denote E as the set of pre-processed event types that cor-
respond to the set of monitored operations (e.g., E = { open-
ing_the_fridge, closing_the_fridge }). In addition, T describes
the set of all possible event timestamps. A temporally-ordered
set of events is represented as follows:

〈Event(se1,et1, t1), . . . ,Event(sek,etk, tk)〉,
where Event(sei,eti, ti) indicates that sei is an instance of the
event type eti ∈ E occurred at timestamp ti ∈ T. A unique
timestamp is assigned to each event.

The SEMANTIC CORRELATION REASONER performs ontolog-
ical reasoning to derive semantic correlations among event
types and activity classes; e.g., “the event type UseStove is
strongly related to PreparingHotMeal and unrelated to Prepar-
ingColdMeal”. Those correlations are used by the module
for STATISTICAL ANALYSIS OF EVENTS to identify candi-
date activity instances, which are then refined by the MLNNC
reasoner. In particular, the events as well as the candidate
activity instances are used to populate the assertional part of
the MLNNC knowledge base. The ontological model of consid-
ered activities and events is translated into the MLNNC model.
Periodically (e.g., at the end of each day), MAP inference is
performed to assign each event to the candidate activity in-
stance that most probably generated it, according to semantic
correlations and ontological constraints. Finally, the output of
MAP inference is post-processed to detect the exact start and
end time of occurred activity instances.

ONTOLOGICAL REASONING
In the following, we introduce a simple running example to
illustrate our approach.

EXAMPLE 2. Suppose to monitor three activities in a
smart home: preparing hot meal, preparing cold meal, and
preparing tea. The home contains: one silverware drawer, one
stove, and one freezer, each equipped with a sensor to detect
its usage. No training set of activities is available. How can
we exploit semantic reasoning to recognize the activities?

In the following of this section, we explain how we answer
the above question.

Semantic correlation reasoner
The specific objective of this reasoner is to compute the de-
gree of correlation among sensor events and the activities
1http://sensor.informatik.uni-mannheim.de/#results2016unsupervised

...

Semantic integration layer

CONTACT 
SENSORS

ENVIRONMENTAL 
SENSORS

pre-processed events

... Event(sek, etk, tk)

MLNNC knowledge base

raw sensor events

MAP inference 

MLNNC model
Recognized

activity
instances

PRESENCE 
SENSORS

Post-processing

Statistical analysis of events

sensor events and candidate ac�vity instances

Event(se1, et1, t1)

Semantic
correlation
reasoner

Ontological
model

Figure 4. System overview. The statistical analysis layer combines the
information received from the sensors and the ontological model to build
a knowledge base. MAP inference enables to derive the most probable
world from this knowledge base considering the MLNNC model. This
results in the recognition of the actual activity instances.

performed in the home. As illustrated in the axioms below,
in our ontology, artifacts are organized in a hierarchy. The
class STOVE is a sub-class of cooking instruments, used in
the apartment to prepare hot meal or tea, where FREEZER is
a DEVICE used to prepare hot or cold meal. SILVERWARE-
DRAWER belongs to FOODPREPFURNITURE and is used for
the three activities. The instance {APT} represents the current
apartment. For clarity, we represent the name of ontological
instances within curly brackets.

STOVE v COOKINGINSTRUMENTu(
∃USEDFOR.

(
(PREPHOTMEAL t PREPTEA)u

(∃OCCURSIN.{APT})
))

.

FREEZER v DEVICE u
(
∃USEDFOR.

(
(PREPHOTMEALt

PREPCOLDMEAL) u (∃OCCURSIN.{APT})
))

.

SILVERWAREDRAWER v FOODPREPFURNITURE.

FOODPREPFURNITURE v FURNITUREu(
∃USEDFOR.

(
(PREPTEA t PREPCOLDMEALt

PREPHOTMEAL)u (∃OCCURSIN.{APT})
))

.

Based on the smart home setup, we instantiate the ontology
with the sensors and artifacts in the apartment, and we specify
which activities we want to monitor.

EXAMPLE 3. The activities that we want to monitor are
{AC_PREP_COLD_MEAL}, {AC_PREP_HOT_MEAL} and {AC_
PREP_TEA}. They are instances representing the generic
occurrences of PREPCOLDMEAL, PREPHOTMEAL, and
PREPTEA, respectively. Lines 5 and 6 state that at most one

http://sensor.informatik.uni-mannheim.de/#results2016unsupervised


instance of each activity type can be monitored at a time. Fur-
ther, lines 7 and 8 represent that the {APT} contains exactly
one cooking instrument, one silverware drawer, and a freezer:

{APT}= APARTMENT (1)

u
(
∃MONITACT.({AC_PREP_COLD_MEAL})

)
(2)

u
(
∃MONITACT.({AC_PREP_HOT_MEAL})

)
(3)

u
(
∃MONITACT.({AC_PREP_TEA})

)
(4)

u(≤ 1MONITACT.PREPCOLDMEAL) (5)
u(≤ 1MONITACT.PREPHOTMEAL)u (≤ 1MONITACT.PREPTEA) (6)

u(= 1(ISIN)−.COOKINGINSTRUMENT) (7)

u(= 1(ISIN)−.SILVERWAREDRAWER)u (= 1(ISIN)−.FREEZER). (8)

Subsequently, we introduce an instance in the ontology for
each artifact in the apartment:

{STOVE} ≡ STOVE u ∃ ISIN.{APT}.
{FREEZER} ≡ FREEZER u ∃ ISIN.{APT}.

{SILVERWARE_DRAWER} ≡ SILVERWAREDRAWER u∃ ISIN.{APT}.

We also instantiate each sensor that occurs in our apartment:

{S_STOVE} ≡ POWERSENSOR u (∃ SENSESUSAGEOF.{STOVE})
u(∃ PRODUCESEVENT.{ET_STOVE}).

{S_SILVERWARE_DRAWER} ≡ CONTACTSENSOR

u(∃ SENSESUSAGEOF.{SILVERWARE_DRAWER})
u(∃ PRODUCESEVENT.{ET_SILVERWARE_DRAWER}).

{S_FREEZER} ≡ CONTACTSENSOR

u(∃ SENSESUSAGEOF.{FREEZER})
u(∃ PRODUCESEVENT.{ET_FREEZER}).

According to the introduced axioms, {S_STOVE} is an instance
of POWERSENSOR which senses the usage of {STOVE} and
produces a generic event of type {ET_STOVE}. Similarly, the
last two axioms define sensors and events for the silverware
drawer and the freezer, respectively.

We exploit the property composition operator to infer the
semantic correlations between sensor events and activity types.
In particular, we use the following axiom, which states that:
“if an event of type et is produced by a sensor that detects the
usage of an artifact possibly used for an activity of class ac,
then et is a predictive sensor event type for ac":

PRODUCESEVENT− ◦ SENSESUSAGEOF◦
USEDFOR → PREDICTIVESENSOREVENTFOR

Then, we perform ontological reasoning to infer the fillers of
property PREDICTIVESENSOREVENTFOR, and use them to
compute semantic correlations.

EXAMPLE 4. Considering all of the introduced axioms, the
OWL 2 reasoner infers that:

• {ET_STOVE} is a predictive sensor event type for {AC_
PREPARE_HOT_MEAL} and {AC_PREP_TEA}.

• {ET_SILVERWARE_DRAWER} is a predictive sensor event
type for {AC_PREP_HOT_MEAL},{AC_PREP_COLD_MEAL
} and {AC_PREP_TEA}.

• {ET_FREEZER} is a predictive sensor event type for
{AC_PREP_HOT_MEAL} and {AC_PREP_COLD_ MEAL}.

We represent semantic correlations using a prior probabil-
ity matrix (PPM). The rows correspond to the activity
classes, where the columns to the sensor event types. Hence,
PPM(ac,et) stores the probability of an event of type et being
generated by an activity of class ac. If a given sensor event
type is predictive of a single activity class, the value of the
corresponding entry is 1; if it is predictive of multiple activ-
ity classes, the value is uniformly distributed among them.
The prior probability matrix resulting from our running ex-
ample is shown in Table 1. The PPM is given as input to the
STATISTICAL ANALYSIS OF EVENTS module.

{et_stove} {et_silverware_ {et_freezer}
drawer}

{ac_prep_
0.5 0.33 0.5

hot_meal}
{ac_prep_

0.0 0.33 0.5
cold_meal}
{ac_prep_

0.5 0.33 0.0
tea}

Table 1. Prior probability matrix of our running example.

Deriving necessary sensor observations
Our ontology includes a property REQUIRESUSAGEOFARTI-
FACT, which associates artifacts in the apartment with activi-
ties for which they are necessary.

EXAMPLE 5. Continuing our running example, the axiom
below defines PREPHOTMEAL as a subclass of PREPARE-
MEAL that requires the usage of a cooking instrument:

PREPHOTMEAL v PREPAREMEALu∃REQUIRESUSAGEOFARTIFACT.(
COOKINGINSTRUMENT u (∃ ISIN.{APT})

)
.

Thus, we infer which sensor events must necessarily be ob-
served during the execution of an activity. The following
axiom states that: “if an event of type et is produced by a sen-
sor that detects the usage of an artifact required for executing
an activity of class ac, then et is a necessary sensor event type
for each activity instance of class ac”.

PRODUCESEVENT− ◦ SENSESUSAGEOF◦
REQUIRESUSAGEOF− → NECESSARYEVENTFOR.

Then, we infer the fillers of property NECESSARYEVENT-
FOR through ontological reasoning, translate them in MLNNC
axioms, and add them to the MLNNC model.

EXAMPLE 6. Given the introduced axioms, in this case the
OWL 2 reasoner infers that {ET_STOVE} is a necessary sensor
event type for {AC_PREP_HOT_MEAL}. Indeed, ET_STOVE
is produced by usage of STOVE, which is the only instance of
COOKINGINSTRUMENT available in the home.

RECOGNIZING ACTIVITY INSTANCES
At first, we identify activity instance candidates and consider
them as part of our MLNNC knowledge base (KB). The KB
also includes observed sensor events and computed semantic



Algorithm 1: Statistical analysis of events
Input: Sensor events {event(se0,et0, t0), . . . ,event(sen,etn, tn)},
Input: prior probability matrix PPM
Output: Candidate activity instances {i0, i1, . . . , im−1}
1: instances← /0
2: for each event(se,et, t) ∈ X do
3: ac← activity class with max correlation with et according to PPM
4: ai← activity instance in instances of class ac closest to se
5: if ai exists and t is temporally close to ai according to maxGapac then
6: assign event(se,et, t) to ai
7: else
8: ai← a new instance of class ac
9: assign event(se,et, t) to ai
10: instances← instances

⋃
{ai}

11: end if
12: end for
13: return instances

correlations. Then, MAP inference enables us to assign each
activity instance to its most probable class, and each event
to its most probable activity instance. Figure 5 depicts our
MLNNC model, where we distinguish between observed (star
symbol) and hidden predicates. Observed predicates represent
knowledge facts, where the instances of hidden predicates are
computed by MAP inference. In the following, we explain the
different components of our framework in detail.

Statistical analysis of events
Candidate activity instances are computed by a heuristic algo-
rithm, shown in Algorithm 1, which implements the STATISTI-
CAL ANALYSIS OF EVENTS module. The algorithm iterates
over all temporally ordered events provided by the SEMANTIC
INTEGRATION layer. It considers the PPM matrix of seman-
tic correlations to infer, for each sensor event se, the most
probable activity class ac generating it. The corresponding
timestamp of the event and the resulting activity class enables
us to formulate initial hypotheses about the occurred activity
instances. If an activity instance ai of class ac exists, whose
boundaries (start and end time) are temporally close to se ac-
cording to an activity-dependent threshold maxGapac, then
se is assigned to ai. Otherwise, a new instance of class ac
is created, and se is assigned to it. The boundaries of each
instance are respectively represented by the first and the last
event of the instance.

MLN modeling
Semantic correlations are modeled through predicates Prior-
Prob, Event, and Instance. The PriorProb predicate represents
correlations among sensor events and activities:

∗PriorProb(SensorEvent,ActivInstance,ActivClass, p)

Hence, it describes the probability p that a given sensor event
se corresponds to a given activity instance ai of an activity
class ac. The probability relies on the semantic correlation
between the event type et and the activity class ac (PPM),
and also depends on the temporal distance between the sensor
event se and the boundaries of the activity instance ai.

Formally, given an activity instance ai of class ac with start
time tst and end time ted , and a sensor event se of type et and

*PriorProb(SensorEvent, Ac�vInstance, Ac�vClass, p)

Predic�on(SensorEvent, Ac�vInstance, Ac�vClass)

OccursIn(SensorEvent,

Ac�vInstance)

InstanceClass(Ac�vInstance,

Ac�vClass)

Seman�c correla�on rules (MLNNC probabilis�c axioms)

Domain constraints (MLNNC determinis�c axioms)

*Event(SensorEvent, EventType, Timestamp)

*Instance(Ac�vInstance,STime,ETime)

Ontological constraints:
o Time-aware inference rules (MLNNC

                             probabilis�c axioms)
o Temporal constraints (MLNNC

                           determinis�c axioms)
o Knowledge-based constraints (MLNNC

                           determinis�c axioms)

Figure 5. Probabilistic activity recognition framework. The arrows indi-
cate the relations and dependencies between the depicted observed and
hidden predicates.

timestamp t, the probability p of *PriorProb(se,ai,ac, p) is
computed by the following function:

p=
{

PPM(ac,et) if ted-MaxGapac ≤ t ≤ tst+MaxGapac
0 otherwise

Each sensor event is represented by an instance of the predicate
Event, which represents the sensor event, its type, and its
timestamp:

∗Event(SensorEvent,EventType,Timestamp)

Candidate activity instances computed by Algorithm 1 are rep-
resented by the predicate Instance which models the relation
between the activity instance, its start time, and end time:

∗Instance(ActivInstance,STime,ETime)

The instantiated predicates, derived from the activity instances
and the recorded sensor events, are added as facts to our
MLNNC knowledge base.

Hidden predicates and domain constraints
Beside the observed predicates, the model also comprises a
set of hidden predicates, which can be considered our target
classes: Prediction, OccursIn, and InstanceClass. The predi-
cate Prediction represents the predicted assignment of a sensor
event to an activity instance of a given class:

Prediction(SensorEvent,ActivInstance,ActivClass)

In addition, the other two predicates are used to express do-
main constraints about the consistency of inferred activity
instances:

OccursIn(SensorEvent,ActivInstance)
InstanceClass(ActivInstance,ActivClass)



In particular, the following domain constraint states that each
sensor event occurs in exactly one activity instance:

|ai|OccursIn(se,ai) = 1,

while the following one states that each activity instance be-
longs to exactly one activity type:

|ac|InstanceClass(ai,ac) = 1.

Semantic correlation rules
The relations between the observed and hidden predicates are
modeled by probabilistic axioms. As illustrated in Figure 5,
the hidden predicate Prediction is derived from PriorProb:

con f : ∗PriorProb(se,ai,ac,con f ) ⇒ Prediction(se,ai,ac).

Thus, the confidence value describes the probability that a
sensor event is assigned to an activity instance of a given class.
In turn, the remaining hidden predicates are derived from the
hidden Prediction predicate. The corresponding probabilistic
axioms are the following:

Prediction(se,ai,ac) ⇒ OccursIn(se,ai),
Prediction(se,ai,ac) ⇒ InstanceClass(ai,ac).

Note that the above rules are subject to the domain constraints
introduced before.

Knowledge-based constraints
Knowledge-based constraints enable us to express conditions
about the occurrence (or non-occurrence) of sensor events of
a given type during the occurrence of an activity instance.

EXAMPLE 7. The constraint “each activity instance of
type ‘preparing hot meal’ must be associated to an event
of type ‘UseStove’ ” is logically expressed by the rule:

InstanceClass(ai, “PreparingHotMeal”) ⇒ ∃ se, t :
OccursIn(se, ai) ∧ ∗Event(se, ”UseStove”, t).

Knowledge-based constraints are automatically derived from
the fillers of the NECESSARYEVENTFOR OWL 2 property
obtained from ontological reasoning as already mentioned.

Temporal constraints
We model MLNNC temporal constraints regarding the duration
and the distance of events or activities. We consider two kinds
of temporal constraints:

1) Temporally close events (e.g., whose temporal distance is
below ∆ seconds) likely belong to the same activity instance.
We express this soft constraint through these axioms:

∀ t1, t2 : (|t1− t2|< ∆) ⇒ tClose(t1, t2)

w Event(se1, et1, t1) ∧ Event(se2, et2, t2)∧
tClose(t1, t2)∧OccursIn(se1, ai) ⇒ OccursIn(se2, ai)

The latter is a probabilistic axiom whose weight w is chosen
experimentally.

2) Constraints on typical duration of each activity (e.g., “show-
ering cannot last more than ∆′ minutes”). We express these

constraints either through probabilistic or deterministic ax-
ioms, according to the characteristics of the considered activ-
ity. Indeed, the variance of the duration of certain activities
(e.g., showering) is relatively small, while it is larger for other
activities (e.g., preparing dinner). The duration of the former
is modeled with deterministic axioms where probabilistic ones
are used for the latter. The axioms below state that an instance
of “showering” cannot last more than ∆′ minutes:

∀ t1, t2 : (|t1− t2|< ∆
′) ⇒ tclose_showering(t1, t2)

InstanceClass(ai,“Showering”) ∧ OccursIn(se1,ai)∧
OccursIn(se2,ai) ∧ Event(se1,et1, t1)∧

Event(se2,et2, t2) ⇒ tclose_showering(t1, t2)

Time-aware inference rules
Finally, as explained before, the semantics of some simple
activities is naturally expressed in our ontology based on the
typical actions composing them. Hence, we apply rules that
express the relation of specific operations derived from sensor
events in context of time. Consider the following example:

EXAMPLE 8. A typical pattern of operations for watering
plants consists in (1) “getting water” and (2) “moving to the
plants” shortly after. We express this activity inference pattern
through the MLNNC axioms below:

Event(se1, “water_sensor”, t1)
∧Event(se2, “plant_presence_sensor”, t2) ∧ t1 < t2

∧ tclose_waterplants(t1, t2) ⇒∃ai :
InstanceClass(ai, “WaterPlants”)

∧occursIn(se1, ai) ∧ occursIn(se2, ai).

Inference of activity instances and temporal boundaries
In order to infer activity instances, their class, and correspond-
ing sensor events, we execute MAP inference on the presented
MLNNC model. The output of MAP inference is the most
probable assignment of (i) sensor events to activity instances
(i.e., fillers of the OccursIn predicate), and (ii) activity classes
to activity instances (i.e., fillers of the InstanceClass predicate).
Since computing the start and end time of activity instances
within MLNNC reasoning would be unnecessarily complicated,
we post-process the result of MAP inference to detect the
temporal boundaries of each activity instance ai:

STime(ai) = min{t : ∃Event(se,et, t)∧OccursIn(se,ai)},
ETime(ai) = max{t : ∃Event(se,et, t)∧OccursIn(se,ai)}.

EXPERIMENTAL EVALUATION
In the following, we present our experimental setup and results.
Due to lack of space, we only present aggregated results of
all subjects. However, the individual results for each subject,
as well as the MLNNC model and the ontology, are available
online2. Unless otherwise specified, the presented results rely
on the introduced unsupervised approach, where the semantic
correlations (PPM matrix) were derived from ontological rea-
soning. To evaluate the effectiveness of semantic correlations
2http://sensor.informatik.uni-mannheim.de/#results2016unsupervised

http://sensor.informatik.uni-mannheim.de/#results2016unsupervised


extracted with our method, we also performed experiments
computing the PPM from the dataset; more precisely, based
on the frequency of the sensors types produced by the differ-
ent activities. We denote by MLNNC (Ontology) the former
method, and by MLNNC (Dataset) the latter. We use the well-
known dataset of Cook et al. [31, 7], named CASAS, and the
dataset presented in [28], called SmartFaber. Both datasets
include interleaved activities in a smart-home environment.
To provide the possibility to reconstruct our approaches and
experiments, we provide a REST API and web interface which
is publicly available3 and supports the MLNNC solver.

CASAS Dataset
The CASAS dataset covers interleaved ADLs of twenty-one
subjects acquired in a smart home laboratory. Sensors col-
lected data about movement, temperature, use of water, in-
teraction with objects, doors, phone; 70 sensors were used
in total. Eight activities were considered: fill medication dis-
penser (ac1), watch DVD (ac2), water plants (ac3), answer
the phone (ac4), prepare birthday card (ac5), prepare soup
(ac6), clean (ac7), and choose outfit (ac8). The order and ex-
penditure of time were up to the subject and it was allowed to
perform the activities in parallel. During the data collection
only one single person was present in the smart home. With
our MLNNC (Ontology) method, only 25 out of 70 sensors
were used. Indeed, the semantic correlation reasoner excluded
the remaining 45 (mostly movement sensors), since they had
no significant correlation with the considered activities.

During this experiment, we evaluated how well the considered
sensor events could be assigned to the corresponding activity
instance, but also the quality of detected activity boundaries.

Table 2 shows that our method outperforms the HMM ap-
proach used in [31] in assigning each sensor event to the
activity instance that generated it. We observe that we recog-
nize each activity at least equal or better than HMM, except
Clean. The poor performance in recognizing Clean is due
to the fact that, in the CASAS dataset, it is characterized by
different movement patterns that are only partially captured
by our method, especially when semantic correlations are ex-
tracted from the ontology. Considering the other activities, the
PPM generated by ontological reasoning obtains essentially
the same performance of the one extracted from the dataset,
confirming the effectiveness of our semantic correlation rea-
soner.

Focusing on the other activities, the experiments show that the
interactions with objects are strong indicators of the performed
activities. However, inspecting the recognition result in detail,
we noticed a few cases in which subjects exhibited strange
behaviors; e.g., prepared soup without water or took the phone
but did not place a phone call. Especially the latter case is hard
to recognize without further information. The former case is
probably related to sensor errors.

Figure 6 illustrates the individual results in more detail. It
highlights that there are cases where we could not recognize
the activities Answer the phone and Clean at all, but in general
the distribution is very similar and narrowed.
3http://executor.informatik.uni-mannheim.de

Table 2. CASAS dataset: Results (F1 measure) of the proposed activity
recognition method compared to related work for interleaved activities.
Dataset (supervised) and Ontology (unsupervised) describe the source of
semantic correlations (PPM matrix).

Class HMM [31] MLNNC MLNNC
(time-shifted) (Dataset) (Ontology)

ac1 0.656 0.803 0.848
ac2 0.862 0.882 0.811
ac3 0.285 0.740 0.720
ac4 0.589 0.688 0.723
ac5 0.828 0.807 0.808
ac6 0.826 0.873 0.882
ac7 0.881 0.781 0.574
ac8 0.673 0.904 0.882

avg. 0.700 0.810 0.781
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Figure 6. CASAS dataset: Detailed recognition results for each activity,
aggregated over all subjects and represented by a box plot.

Considering the boundary detection method, the experiments
show that preceding results and the quality of the detected
boundaries for the individual activities are weakly related.
Table 3 describes the deviation from the actual boundaries in
detail. ∆Start is the average difference between the actual and
predicted start of an activity instance in minutes. ∆Dur is the
average difference of actual and predicted duration. In context
of the typical duration of each activity, the boundaries are well
detected. Hence, the highest deviations are associated with
the longest activities, and the overall results are acceptable for
most applications.

Table 3. CASAS dataset: Results of boundary detection with MLNNC
(Ontology). It shows the average deviation [min] of the candidate com-
pared to the refined instances.

Class ∆Start ∆Start ∆Dur ∆Dur
(Candidate) (Refined) (Candidate) (Refined)

ac1 0.670 0.765 1.436 0.890
ac2 0.592 0.592 2.974 3.140
ac3 0.075 0.081 0.930 0.829
ac4 0.079 0.079 0.341 0.422
ac5 1.300 1.079 5.810 4.642
ac6 1.617 0.109 4.077 0.803
ac7 1.311 0.692 2.390 2.249
ac8 0.079 0.097 1.300 0.521

avg. 0.727 0.456 2.424 1.701

When we compare the candidate instances and the refined
(final) results obtained through MLNNC reasoning, it strikes
that our method refines the candidates reliably. Regarding
watch DVD (ac2) and answer the phone (ac4), the refined

http://executor.informatik.uni-mannheim.de


duration increased slightly, because in some cases subjects
took the phone well before using it, or turned on the DVD
player well before watching a DVD. Besides, the low numbers
clearly show that the duration of the different activities was in
general short.

SmartFaber Dataset
The dataset was acquired from an elderly woman diagnosed
with Mild Cognitive Impairment, living alone in her apartment.
Different environmental sensors (magnetic sensors, motion
sensors, temperature sensors) have been used to monitor three
ADLs for 55 days: Taking medicines (ac9), Cooking (ac10),
Eating. Moreover, activity Others (ac11) was also labeled.
Totally, 11 sensors were deployed. Our semantic correla-
tion reasoner discarded 2 sensors among them, because they
had no significant correlation with the considered activities.
Compared to CASAS, this dataset was acquired in a fully
naturalistic environment. Due to the cognitive decline of the
subject, activities have been performed in many different and
sometimes unexpected ways. Besides, the acquired data is
also affected by noise due to various technical issues encoun-
tered during data acquisition [28]. Hence, the recognition of
ADLs in this scenario is challenging, even if the number of
considered activities is limited.

In order to be comparable with the results of previous works on
the same dataset, we focused on activity instance classification.
Table 4 shows the corresponding results and indicates that the
accuracy achieved by our unsupervised method is comparable
to the one achieved by the supervised method used in [29].
That method relied on temporally-based feature extraction and
on a random forest classifier. However, we were unable to
recognize Eating, because in the dataset it was only character-
ized by a single presence sensor close to the table, that was
also used in context of the other activities. Hence, our seman-
tic correlation reasoner did not find any sensor significantly
correlated to Eating. Therefore, we decided to exclude that
activity from the evaluation. On the other side, we were able
to recognize Others, which was not considered in [29].

Inspecting the results, we notice that, with Cooking, our un-
supervised method achieves essentially the same recognition
rate of the supervised technique. With Taking medicines, the
accuracy of our method is lower, mainly due to the absence
of sensors strongly correlated to that activity. The accuracy
of recognizing Others is in line with the one of the other ac-
tivities. Considering the corresponding instance boundary
results, Table 5 shows that, also with this dataset, MLNNC
refinement significantly improves the accuracy of predicted
activity instances.

Table 4. SmartFaber dataset: Results (F1 measure) of the proposed activ-
ity recognition method compared to related work. Dataset (supervised)
and Ontology (unsupervised) describe the source of semantic correla-
tions (PPM matrix).

Class SmartFABER [29] MLNNC MLNNC
(supervised) (Dataset) (Ontology)

ac9 0.946 0.837 0.831
ac10 0.757 0.669 0.752
ac11 - 0.665 0.702

Table 5. SmartFaber dataset: Results of the boundary detection method.
It shows the average deviation [min] of the candidate compared to the
refined instances.

Class ∆Start ∆Start ∆Dur ∆Dur
(Candidate) (Refined) (Candidate) (Refined)

ac9 2.199 2.533 1.084 1.084
ac10 14.437 8.954 25.833 21.133
ac11 7.559 3.255 34.170 16.590

avg. 8.065 4.914 20.362 12.936

DISCUSSION AND FUTURE WORK
In this paper, we proposed an unsupervised method to rec-
ognize complex ADLs through ontological and probabilistic
reasoning. Extensive experiments with real-world datasets
showed that the accuracy of our unsupervised method is com-
parable to the one of supervised approaches, even using a
smaller number of sensors.

On the negative side, our technique requires a relevant knowl-
edge engineering effort to define a comprehensive ontology
of activities, home environment, and sensor events. For in-
stance, our ontology includes 235 classes and 59 properties.
One could argue that the advantage of ontological reasoning
does not worth the effort, since it would be easy to manually
estimate correlations among activities and sensor events based
on common sense. However, consider the CASAS setup used
in our experiments: it involves 70 sensors and 8 activities,
resulting in 560 combinations of activities and sensor events.
Other real-world deployments are much more complex. Hence,
manual modeling would be unfeasible in a realistic scenario.

We point out that the knowledge engineering effort can be
reduced by reusing existing ontologies. In particular, the
ontology used in this work is an extension of the COSAR
ontology [26], which was originally intended to model context
data and human activities. The extension mainly regarded the
definition of a few classes for activities and artifacts that were
not considered before, and a few additional properties used
by our reasoning method. Developing the extension required
one day of work by a researcher with good skills in OWL 2
modeling. Moreover, we were able to use the same ontology
for both apartments involved in our experimentation, which
had very different characteristics. However, it is questionable
whether in larger scale implementations the same ontology
can be adequate to cover every possible home environment
and individuals’ mode of activity execution. We intend to
perform extensive experiments in real-world environments to
answer this question. Moreover, as a future research direction,
we want to exploit active learning to fine-tune the probabilis-
tic model according to the user’s environment and personal
habits, and to automatically evolve the ontology according to
the current context.
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