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A B S T R A C T

Cybersecurity aspects in modern automotive vehicles are becoming increasingly important due to the recent
demonstration of successful cybersecurity attacks. Intrusion Detection System (IDS) is one of the approaches
proposed in the research literature to detect such attacks. This paper proposes a novel IDS approach based on
the application of Recurrence Quantification Analysis (RQA), in combination with a sliding window, to the
information of the CAN-bus message arrival time, which has the benefit of not requiring the processing of the
arbitration field or the payload data of the CAN-bus message. The rationale for the application of RQA to this
problem is to consider the in-vehicle network as a dynamic system where the CAN-bus message time is used
as an observable. This approach is evaluated with various machine learning algorithms on two public data
sets recently published by the research community with a focus on spoofing attacks since they are the most
difficult to detect. The proposed approach is compared with the application of entropy measures for attack
detection, which are commonly adopted in the literature and with the results from the literature on the same
data sets. The results show that the RQA based approach provides a better detection accuracy than entropy
measures in a consistent way across different sliding window sizes in both data sets and it is competitive
against other approaches in the literature. This paper provides also an extensive evaluation of the impact on
detection accuracy of the sliding window size and the hyper-parameters present in the definition of RQA and
the machine learning algorithms.
. Introduction

With the evolution of the automotive industry to increased levels
f connectivity and automation, the potential for cybersecurity attacks
s growing as the vehicle is more exposed to digital attacks. A mod-
rn vehicle today is implemented with various electronic components
ncluding sensors, actuators, Electronic Control Unit (ECU)s and com-
unication devices, which are connected to different types of in-vehicle
etworks. One of the most common in-vehicle network standards in
he automotive industry is the Controller Area Network-bus (CAN-
us), which has a widespread adoption in the automotive industry and
hose security has been significantly investigated in recent times [1,2].
AN-bus protocol was invented by Robert Bosch GmbH and officially
eleased in 1991. It is a message-based protocol, which was designed to
eet the specific requirements of in-vehicle environment, such as real-

ime processing, strong robustness, and cost effectiveness. The CAN-bus
rotocol uses broadcast communication to transmit messages among
he ECUs accessing the in-vehicle network. A detailed description of the
AN-bus protocol with its frame structure is presented in Section 3.

The remote exploitation of a passenger car was demonstrated in
he seminal paper by [3], where the authors managed to demonstrate
successful cybersecurity attack against an unaltered Jeep Cherokee.

E-mail address: gianmarco.baldini@ec.europa.com.

The weakness exploited by the authors of [3] and other vulnerabilities
identified by other authors [2] prompted the research community
to investigate more in detail techniques, which could address such
vulnerability and mitigate possible attacks.

One of the most common techniques in cybersecurity is Intrusion
Detection System (IDS), which has a long history in cybersecurity liter-
ature in general (beyond the specific field of automotive cybersecurity)
as described in one of the initial surveys on this topic in 1993 [4],
where it is mentioned that IDS performs the essential function to
detect unauthorized intruders and attacks to the network infrastructure
(i.e., the automotive in-vehicle network in this study). The survey [4]
mentions two main IDS categories: offline IDS where the analysis of
logs and audit records is performed some time after the traffic network
operation (e.g., the analysis is executed the day after the network or
computer system activity) and the online (or real-time), IDS where the
analysis is performed directly on the traffic or immediately after the
traffic features are calculated. In the automotive domain, it should be
considered that a commercial vehicle has limited computing capabil-
ities, which can be used to implement the IDS. A potential approach
could be to outsource the IDS implementation to cloud-based systems
with powerful computing capabilities but this approach would require
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significant connectivity means to transmit the traffic logs from the
in-vehicle network [5,6]. For example, Deep Learning (DL) has been
recently introduced with success in IDS for in-vehicle networks where it
achieved excellent detection results in comparison to shallow machine
learning [7,8] but the application of DL requires significant computing
resources which may not be available in a vehicle but they could be
implemented in a cloud system. For this reason, this paper focuses on
the online (or real-time) IDS where the analysis is performed directly on
the in-vehicle traffic and only ‘shallow’ (as opposed to ‘deep’ machine
learning) machine learning algorithms are used. Then, the problem
addressed by the study presented in this paper is to design a IDS
approach, which could be time efficient, minimize the processing of in-
vehicle traffic data (e.g., CAN-bus payload data) but still able to achieve
a high detection accuracy.

Recent surveys on the design and implementation of IDS in in-
vehicle networks [1,5,6,9] have classified IDSs in different categories
with each category with specific advantages and disadvantages. One
classification is related to the specific observable in the CAN-bus traffic
(a brief description of the CAN-bus traffic standard is provided in
Section 3.1): the time of arrival of the CAN-bus message, the CAN-
ID/arbitration field or the payload data. While the IDSs based on
CAN-ID or payload data requires the processing of the CAN-bus mes-
sage, the time of arrival can be more easily extracted (thus requiring
less computing power) from the CAN-bus traffic. Another classifica-
tion is related to the processing of the in-vehicle traffic in batches
or sliding windows where the analysis is performed on features ex-
tracted from a set (i.e., the sliding window) of CAN-bus messages
rather than the single ones. The sliding window approaches are more
time efficient because of the dimensionality reduction introduced by
the window [10–13] but they may suffer from a degraded detection
performance because information may be lost in the window process-
ing [1,5]. Finally, different types of attacks have been investigated in
the literature including the Distributed Denial of Service (DDoS) (where
CAN-bus messages of the same type and content are used to overload
the in-vehicle network and ECUs), the Fuzzy attack (where CAN-bus
messages are randomly selected and injected in the in-vehicle network)
and the spoofing attacks where injected traffic by a malicious attacker
tries to replicate traffic related to a specific function (e.g., Gear). A
detailed description of these attacks is provided in Section 3. From
the literature, it is known that spoofing attacks are more difficult to
detect [8,12,14] and for this reason, this approach focuses on spoofing
attacks even if an analysis and comparison with the literature results is
done for other attacks as well (e.g., DoS, Fuzzy) for completeness.

To summarize, with reference to the classification described in the
previous paragraphs, the approach proposed in this paper focuses on
online real-time IDS for in-vehicle networks with optimal computing
efficiency while trying to preserve a good detection accuracy. Then, it
is based on the analysis of CAN-bus message arrival time, it adopts a
sliding window approach and it uses shallow machine learning algo-
rithm rather than DL. Finally, it focuses only on spoofing attacks as
they are more challenging to detect.

Regarding the application of RQA, the proposed approach is based
on the assumption that in-vehicle network and the traffic they are
carrying can be considered as a system, whose dynamics may give
indications on the presence of attacks. The main idea is that the
injection of an attack in the in-vehicle network traffic can change its
dynamics. In particular, it can impact the arrival time of the CAN-
bus messages because of the way the CAN-bus network is designed
(see Section 3.1) and it has been proven in the literature that arrival
time and inter-arrival time (the time difference between two CAN-bus
messages) can be used to detect attacks [15]. Then, non-linear methods
designed for monitoring and analysis of dynamic systems could be
applied to detect the attack. This assumption was empirically evaluated
in this paper with the application of a specific approach called RQA to
two recent public data sets of in-vehicle network traffic where spoofing
attacks were implemented.
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Table 1
Abbreviations used in this paper.

Abbreviation Explanation

AMI Average Mutual Information
AuC Area Under Curve
CAN Controller Area Network
DDoS Distributed Denial of Service
DoS Denial of Service
DT Decision Tree
ECU Electronic Control Unit
ER Error Rate
FNR False Negative Rate
FPR False Positive Rate
ICT Information and Communication Technology
KNN K Nearest Neighbor
IDS Intrusion Detection System
MaxDL Maximum Diagonal Line
MeDL Mean of the lengths of the Diagonal Lines
OBD-II On-board diagnostics version 2
ROC Receiver Operating Characteristics
RP Recurrence Plot
RPM Revolutions Per Minute
RQA Recurrence Quantification Analysis
RTE Recurrence Time Entropy
RR Recurrence Rate
SVM Support Vector Machine
TPR True Positive Rate

The two data sets were chosen because they were created using real
vehicles in both stationary and real driving conditions, are fully labeled
to support a supervised ML method and they are significantly large in
size (i.e., contain millions of CAN-bus messages).

Regarding the main algorithm used in this study, the RQA is a
method of nonlinear data analysis (e.g., chaos theory) for the inves-
tigation of dynamical systems. It quantifies the number and duration
of recurrences of a dynamical system presented by its phase space
trajectory [16]. RQA has been used for traffic classification in [17]
but it has never been used (to the knowledge of the author) for the
detection of cybersecurity attacks in the automotive in-vehicle network
traffic and even more specifically for spoofing attacks.

Table 1 presents all the abbreviations used in this paper.
This paper is organized as follows: Section 2 provides a state of art

of related work for IDS in in-vehicle networks with a specific focus on
approaches based on the sliding window and statistical or information
theory features. It also gives an overview of the application of RQA
in cybersecurity or traffic analysis. Section 3 describes the CAN-bus
protocol and the data sets used in this study, how they were gener-
ated and the related attacks scenarios. Section 4 describes the overall
methodology used in the proposed approach including the machine
learning algorithms and the metrics of evaluation. This section also
describes the RQA used in this paper and the related hyper-parameters
present in the design of RQA and the adopted shallow machine learning
algorithms and metrics to perform the classification and detection of
the attacks. Section 5 provides the results of the evaluation on the two
different data sets and an analysis of the impact of the hyperparameters.
Section 6 draws conclusions and describes future developments.

2. Related work

The field of IDS, in general, is quite vast and even the specific
field of IDS in in-vehicle networks has many references. For reasons
of space, this section describes the studies in the literature, which
are pertinent to the proposed approach and the data sets used in this
paper. In particular, this section focuses on three different areas: (a)
intrusion detection systems in in-vehicle networks with a specific focus
on sliding windows methods, (b) the application of RQA in the field of
cybersecurity and traffic analysis, and (c) studies using the same data
sets used in this paper.
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As it was already described in the introduction, this paper proposes
time efficient IDS based on a sliding window approach combined
ith machine learning and applied to the CAN-bus in-vehicle traffic
bservable, which is the time of arrival of the CAN-bus message.
arious studies have adopted the time of arrival as observable. In [18],

he authors have used the time intervals between sequential CAN-bus
essages (as in this paper) obtaining detection accuracy up to 100%

or the DDoS attack. On the other side, the DDoS attack is relatively
asier to detect than spoofing attacks addressed in this paper as shown
n various studies [8,12,14]. In addition, the approach proposed in [18]
s based on the analysis of each CAN-bus message while this paper
roposes a more time efficient approach based on a sliding window.
nother study exploiting the differences in the distributions of the inter-
rrival times of the CAN-bus messages (like this paper) is [19], which
emonstrates that the analysis of the distribution of the inter-arrival
imes has discriminating power in detecting attacks (in particular the
DoS attacks). A recent study on the application of the sliding windows

o vehicular IDS is also presented in [11] where a similarity-based
DS approach is presented and compared to Shannon entropy based
pproach for DoS attacks. The results show that the similarity-based IDS
pproach has low computing complexity but it is still able to achieve
ery high accuracy for DoS attacks. On the other side, other attacks are
ot explored.

Statistical analysis of the traffic in the in-vehicle network uses vari-
us methods including the application of information theory measures
e.g., entropy measures). A common approach is to use a sliding win-
ow of the in-vehicle network traffic where the measures are calculated
n the window data. The rationale is that the value of the calculated
easures can change significantly between the normal traffic and the

raffic where the attacks are present.
A paper that adopts a similar approach to ours is [13], where the

uthors have used Shannon entropy to detect two types of attacks: a
eplay attack (comparable with spoofing attacks) and a fuzzy attack. A
liding window where the entropy is calculated and evaluated against a
hreshold k was used. This initial study was based on the timing of the
essages and the detection accuracy suffered when the rate of attacks

s relatively low. This study uses [13] for comparison in Section 5
ecause it adopts the same observable (i.e., the timing of the CAN-
us message), it adopts a sliding window approach as in this paper,
t also addresses spoofing attacks and it extracts features from the
indow of the in-vehicle network traffic. The difference between this
aper with [13] is that RQA is used instead of Shannon entropy. A
liding window approach to detect intrusions in in-vehicle networks is
lso proposed in [10] where it is used to detect two different types of
ttack: a DoS Attack and injection attacks including spoofing attacks.
n [10], the impact of different window sizes is evaluated as well as
he threshold used to determine when an attack is implemented or not.
n comparison to this paper, the authors of [10] use the arbitration
ield (also called CAN-ID), which requires the processing of the CAN-
us messages. The authors of [10] use Shannon entropy as a detection
eature. Both [10,13] show that spoofing attacks are more difficult to
valuate in comparison to DDoS attack and this is the reason why this
aper focuses on spoofing attacks.

Another study based on the sliding window approach is [20], which
lso uses the time interval of the CAN-bus messages to detect spoof-
ng attacks. The authors of [20] used the time interval information
nd the correlation coefficient between offsets and time intervals to
etect fuzzy, DoS, and impersonation attacks (thus including spoofing
ttacks).

Other papers used additional entropy measures beyond Shannon
ntropy together with the sliding window approach. For example the
uthors in [21] use the Renyi entropy of orders 2, 3 and 4 to detect a
oS and Fuzzy attack. The approach is evaluated for different sizes of

he sliding window. Contrary to this paper, the authors of [21] have
sed the observable of the arbitration field for their analysis.

Other papers have used alternative approaches. For example, the

ecent paper [22] applied an improved isolation forest method with
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data mass (MS-iForest) for data tampering attack detection where data
mass is used as the base function to group traffic sample in regions for
further processing by the isolation forest algorithm.

Finally, other studies have used the sliding window in combination
with deep learning. In [8], the authors have used a fixed sliding
window to transform the in-vehicle traffic to images, which are given
as in input to a convolutional neural network for classification. On
the other side, the application of deep learning algorithms requires
considerable computing resources, which is the reason why this paper
uses conventional (‘shallow’ in opposition to ‘deep’) machine learning
algorithms.

The application of RQA in IDS has not been investigated to the best
knowledge of the author in in-vehicle networks, but there are few ex-
amples in the IDS applied to ICT infrastructures. For example, in [23],
the authors have used RQA based features (named non linear analy-
sis) for intrusion detection in conventional (non automotive related)
networks achieving high accuracy. In a similar way, recurrent plots
(which form the basis of RQA) are used in [24] for the implementation
of intrusion detection systems. The approach is similar to ours in the
definition of a sliding window where the recurrent plots are calculated
and the features are extracted.

In a similar way, another paper, which investigated the application
of RQA for network traffic analysis is [25] where the natural complexity
of wireless mobile network traffic dynamics has been assessed by
tracing the presence of non-linearity and chaos in the profile of daily
peak hour call arrival and daily call drop of a sub-urban local mobile
switching center.

Finally, we identify the studies, which use the same data sets
used in this study. Apart from the Refs. [8,14] created by the same
authors of the CarHack2018 data set, other authors have used the same
data sets and published the results of their evaluation. In [26], the
authors have focused on the family of Tree-based machine learning
algorithms (e.g., Decision Tree, Random Forest) on the CarHack2018
data set achieving very good accuracy, but a sliding window approach
was not used. In [27], the authors have focused only on the DoS
and Fuzzy attacks of the CarHack2018 data set using KNN and SVM
machine learning algorithms. As in this paper, the IDS design is based
on the analysis of the offset ratio and time interval between the
messages request and the response in the CAN-bus protocol, but no
sliding window approach was used and the spoofing attacks were not
considered. A very recent study using a sliding windows approach on
the CarHack2018 data set is presented in [28] where histograms are
created on the CAN-bus payload. When a malicious attack is detected,
a filtering method is applied to filter normal traffic. Finally, the KNN al-
gorithm and one-class SVM is used to implement the ML classification.
Then, it is a two step based approach. The proposed approach manages
to achieve 100% accuracy for the spoofing attacks and less for the other
attacks in the CarHack2018 data set. In comparison to this study, the
advantage of the approach proposed in this paper is that the payload
data does not need to be processed.

To the best knowledge of the author, only two studies have been
published (at the time of drafting this study) which use the
CarHack2020 data set. The first study [29] is by the authors of the data
set itself but it provides a description of the hackathon challenge related
to the data set and it does not provide the specific details on the used
approach. Instead, one recent and quite extensive study [30] applies
deep learning algorithms (RNN, CNN, LSTM) to the CarHack2020 data
set and compares the results with ‘shallow’ machine learning algorithms
like DT, SVM and KNN. The DL algorithms manage to achieve a higher
detection accuracy. The sliding window method is not used. In addition,
the study in [30] uses both the CAN-ID and the CAN-bus payload data.

To summarize, the study presented in this paper advances the state
of art in intrusion detection in in-vehicle networks by applying RQA
in combination to the sliding window concept and the inter-time of
arrival of the CAN-bus messages, which are known (from the references
identified above) to be more time efficient than other observables in the
CAN-bus messages, which require the processing of the payload data or

the CAN-ID (i.e., arbitration field).
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Fig. 1. Standard CAN-bus message frame.
. Data sets and attack scenarios

To evaluate the proposed approach, two different public data sets
re used, which have been recently created and published: the first
ne (called CarHack2018 in the rest of this paper) was generated by
he Hacking and Countermeasures Research Lab and it is described
n [8,14], the second data set (called CarHack2020 in the rest of this
aper) is the Car Hacking: Attack and Defense Challenge 2020 Data set,
hich is described in [29,31].

These data sets have been chosen because: (1) they are based on
he collection of extensive (i.e., millions of CAN-bus messages) and real
ata (i.e., not simulated) from vehicles where cybersecurity attacks are
mplemented by the authors of the data set, (2) both data sets are fully
abeled which is essential, because the approach proposed in this paper
s based on supervised learning, (3) both data sets included spoofing
ttacks (other public data sets only provide DoS or Fuzzy attacks) and
4) both data sets are relatively recent (2018 and 2020).

This section is structured in three sub-sections: Section 3.1 describes
he CAN protocol, Section 3.2 describes the CarHack2018 data set and
ection 3.3 describes the CarHack2020 data set.

.1. Description of the controller area network protocol

CAN-bus protocol was invented by Robert Bosch GmbH and of-
icially released in 1991. It is a message-based protocol, which was
esigned to allow robust communication among microcontrollers in a
ehicle and meet the specific requirements of in-vehicle environment,
uch as real-time processing, strong robustness, and cost effectiveness.
AN-bus protocol uses broadcast communication to transmit messages.

A description of the standard CAN-bus (CAN 2.0) frame structure
ith the identification of the specific fields is provided in Fig. 1.

As mentioned before, the focus of this paper is not on the use of the
AN-bus fields of the CAN messages like the arbitration field/ CAN-ID
sed in [8,10,14] or the payload data used in [12] but on the arrival
ime stamp of the CAN-bus message, which does not require specific
rocessing of the CAN-bus messages and it is more time efficient.

.2. Description of the CarHack2018 data set

The data set CarHack2018 is based on data extracted from a
yundai YF Sonata through a Y-cable plugged into the OBD-II port

hrough a Raspberry Pi3 as described in [8,14]. The recorded CAN-bus
raffic matches the specification of CAN 2.0 with a CAN-bus message
nterpretation based on the Hyundai YF Sonata model.

The data sets contain each 300 intrusions of message injection.
ach intrusion is performed for a time ranging from 3 to 5 s, and each
489
Table 2
Data set used in this paper from [8,14].

Attack type Number of
messages

Number of normal
messages

Number of injected
messages

DoS attack 3,665,771 3,078,250 587,521
Fuzzy attack 3,838,860 3,347,013 491,847
Spoofing the drive gear 4,443,142 3,845,890 597,252
Spoofing the RPM gauge 4,621,702 3,966,805 654,897

data set has total 30 to 40 min of CAN-bus traffic. Then, the data sets
are quite extensive and they contain millions of messages as described
in the following Table 2:

The four attack scenarios are described below:

• In the Denial of Service (DoS) attack, messages of ‘0000’ CAN-bus
ID were inserted in the in-vehicle network every 0.3 ms.

• In the Fuzzy attack, totally random CAN-bus ID and payload data
values of the CAN-bus messages were injected every 0.5 ms.

• In the Spoofing attack of type RPM, messages related to the RPM
information were injected every 1 ms.

• In the Spoofing attack of type Gear, messages related to the Gear
information were injected every 1 ms.

The data sets were created by logging CAN-bus traffic (from 30 to
40 min of CAN-bus traffic) via the OBD-II port from a real vehicle while
message injection attacks were performed. As described in [8,14] and
other papers, which used this data like [12], the spoofing attacks (RPM
and Gear) are the ones most difficult to detect because these attacks
replicate traffic naturally generated in the vehicle. For this reason, this
paper focuses mostly on spoofing attacks even if a comparison with
results in the literature is also presented for the other two attacks
(e.g., DoS, Fuzzy) in the Results Section 5.

3.3. Description of the CarHack2020 data set

The second data set CarHack2020 was recently created in the con-
text of a competition aimed to develop attack and detection techniques
of CAN-bus [29,31]. The target vehicle of competition was of model
Hyundai Avante CN7. The data set is CAN-bus network traffic of Avante
CN7 including normal messages and attack messages. Various data
sets were created for the competition: a preliminary training set, a
preliminary submission set, and the final submission data set without
labels. In this paper, we have used only the preliminary training set
because it is fully labeled and this paper is focused only on supervised
learning. Since the data set is created both for a stationary scenario
(i.e., vehicle switched on) and a driving scenario (i.e., vehicle driving)
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Fig. 2. Overall workflow for the analysis of in vehicle traffic data and the application of Recurrence Plot Analysis.
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ur approach was evaluated in both cases. The stationary scenario data
et is called CarHack2020Sta or CarHack2020Dri in the rest of the
aper. In a similar way to the previous data set CarHack2018, different
ttacks are present: (1) Flooding attack which aims to consume CAN-
us bandwidth by sending a massive number of messages. This attack
isrupts normal driving and limits the communication between ECU
odes by sending high frequency and high priority messages (e.g., 0
00). This is equivalent to the DoS attack of CarHack2018. (2) Spoof-
ng where CAN-bus messages are injected to control certain desired
unctions. (3) Fuzzing (equivalent to the Fuzzy attack of CarHack2018)
here random messages are injected to cause unexpected behavior of

he vehicle. In the fuzzy attack, a malicious ECU transmits random
rames with spoofed CAN IDs with arbitrary data values, which caused
he vehicle function to be unavailable (e.g., 0 4CC, 0 7C6). As reported
n [31], the data set is quite extensive with 3,372,743 Normal CAN-bus
essages, 299,408 Attack CAN-bus messages for a total of 3,672,151
AN-bus messages. As stated before, the focus of this paper is on the
poofing attacks and most of the analysis is implemented on these
ttacks, but an evaluation of the approach presented in this paper on
he other attacks is also presented in the Results Section 5.

. Materials and methods

.1. Workflow

The description of the workflow for the processing of the data
s described in this section and it is pictorially described in Fig. 2.
s described in the introduction, a sliding window approach is im-
lemented where a set of CAN-bus messages is processed and used
o generate a sample for the subsequent data analysis process. The
umber of CAN-bus messages (i.e., the window size of the sliding
indow) used to create the sample is defined by the parameter 𝑊𝑠 in

he rest of this paper. In a similar way to what has been done in the
iterature, a sample of size 𝑊𝑠 is considered normal/legitimate (Note:
he terms legitimate traffic and normal traffic have the same meaning
n the rest of this paper.) if the sample contains only normal CAN-
us messages. The sample is considered malicious (e.g., an attack is
eing implemented) if it contains at least a single CAN-bus message
abeled as malicious in the data set. The use of a moving window allows
aster detection of the attack as the CAN-bus messages are processed
n ‘batches’ (i.e., the samples) rather than a single CAN-bus message
t the time. In this paper, the choice is to avoid overlapping among
amples: no CAN-bus message belongs to two samples at the same time.
he reason for this choice is to foster time efficiency as overlap would
bviously increase the processing time.

As mentioned before, the observable used in the approach is the
nter-arrival time between two consecutive CAN-bus messages. The
 i
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rrival time of the CAN-bus messages is information, which is present
n the data sets. Then, in the initial pre-processing phase, the difference
n arrival time between subsequent messages is calculated. The initial
AN-bus traffic data set is transformed (for all the data sets) to a time
eries 𝑥𝑖 (i = 1, . . . , 𝑁𝑇 -1, where 𝑁𝑇 is the number of CAN-bus messages
n the data set) on which the sliding window is applied. The entire time
eries 𝑇𝑖 is segmented in non-overlapping segments of size 𝑊𝑆 , where
𝑆 itself is an hyper-parameter in the data analysis. In other words,

he proposed approach is evaluated against different values of 𝑊𝑆 . For
ach segment, the distance matrix and the related recurrence plot is
alculated.

A visual presentation of the recurrence plots for the normal and the
poofing attack traffic is shown in Figs. 3 and 4 respectively for the
ormal and spoofing related traffic in the CarHack2020Sta data set.
ven a visual check shows the difference between normal traffic and
he traffic where the spoofing attack is present.

As described in the definition of recurrence plots and RQA in
ection 4.2, the threshold 𝑇ℎ𝑟 to generate the recurrence plot is another
yper-parameter in the approach. While it is possible to adaptively
alculate the 𝑇ℎ𝑟 on the basis of the distribution of the Recurrence Plots
RP) elements, the final goal is the detection accuracy which may not be
ully related to the adaptive criteria to define 𝑇ℎ𝑟 and a more extensive
rid approach is preferred. Then, an extensive number of RQA features
re calculated from the recurrence plot to generate a feature matrix,
hich is fed to machine learning algorithms. The delay parameter is

et to 1 in this study, because delay values greater than 1 may generate
he risk to miss CAN-bus messages including attacks.

To compare the approach proposed in this paper with other ap-
roaches proposed in the literature, the Shannon entropy and Renyi
ntropy of order 2,3,4 are also calculated to generate other feature
atrices. After the entropy measures are extracted, machine learning

lgorithms are applied on the feature matrices to estimate the detection
ccuracy on the basis of different metrics like Error Rate (ER), False
ositive Rate (FPR) and False Negative Rate (FNR), Receiver Operative
haracteristics (ROC), and Area Under Curve (AUC) as described in
ection 4.3.

.2. Recurrence quantitative analysis

The classification strategy to identify the spoofing attacks in the in-
ehicle traffic starts from the identification of nonlinear characteristics,
uch as recurrence phenomena and non-stationary transition patterns in
he time series created from the segmentation of the in-vehicle network
raffic with the sliding window and the extraction of the inter arrival
ime. The main idea is to reconstruct the (unknown) system dynamics
n the phase space by using time-delay embedding, then computing



G. Baldini Computer Communications 191 (2022) 486–499

s

t
m
t
(
l
h
a

s
t
(
c
b

w
n

ℜ

𝑦

w
c
v
a
o
v
i
i
c
t

t
t
d
R

p

w
c
s
d
w
d
T
c
R
r
d
i
t
t
p
n

t
a
i
p
t
i
T
p
o

4

a

Fig. 3. Example of Recurrence Plot created from in-vehicle traffic in presence of the
normal traffic (CarHack2020Sta data set).

Fig. 4. Example of Recurrence Plot created from in-vehicle traffic in presence of a
poofing attack (CarHack2020Sta data set).

he distances between all pairs of embedded vectors, generating a sym-
etric two-dimensional square matrix (the distance matrix) on which

he recurrence plots are created and the RQA features are generated
see [16,32] for a description of RQA and the definition of the related
emmas and proofs). This section describes how this is achieved, which
yper-parameters are defined in the process and which RQA features
re calculated.

To help to determine the non statistical behavior of the vehicle as a
ystem from the in-vehicle network traffic, we can lean on the Takens
heorem [33], which states that a topologically equivalent picture
i.e., the phase space trajectory) of the behavior of the original system
an be generated from the time series of a single observable variable,
y means of the method of time delays.

Regarding notation, in the rest of this section, the time series 𝑥𝑖
ith 𝑖 = 1,… , 𝑁 is the value of the inter-arrival time of the in-vehicle
etwork traffic. 𝑁 is equal to the size of the sliding window is 𝑊𝑆 .

Then, we can create a set of all embedded vectors y(i) in the space
𝑀 defined by:

(𝑖) = (𝑥𝑖, 𝑥(𝑖+𝜏), 𝑥(𝑖+(2∗𝜏)), 𝑥(𝑖+(3∗𝜏)), 𝑥(𝑖+((𝑀−1)∗𝜏))) (1)

here M is the embedding dimension and 𝜏 is the time delay. In this
ontext, 1 + ((𝑀 − 1) ∗ 𝜏) must be less than 𝑊𝑆 . Considering that the
alue of 𝜏 is set to 1 to ensure that all relevant CAN-bus messages
re used to detect the attack, this condition is satisfied for the values
f M considered in this analysis (see Section 5 for the range of M
alues). The set of all embedded vectors y(i), constitutes a trajectory
n space ℜ𝑀 . Then, each unknown point of the phase space at time i
s reconstructed by the delayed vector y(i) in the M-dimensional space
alled the reconstructed phase space. The lemmas and proofs related to
he definition of RQA are described in the Refs. [16,33], and [32].

While there are different methods to determine the value of m like
he Average Mutual Information (AMI) used in [23], in this paper
he values are evaluated empirically to evaluate their impact on the
etection accuracy of the spoofing attack as shown in the Section
esults 5. In other words, they are hyper-parameters of the proposed
491
Table 3
RQA features used in the study described in this paper.

Id Acronym Description

1 RR Recurrence rate, which is the measure of the density of
recurrence points in the RP. It is also called correlation
sum.

2 DET Determinism, which is the ratio of recurrence points that
form diagonal structures to all recurrence points.

3 MeDL Mean of the lengths of the diagonal lines found in the RP.

4 MaxDL Longest diagonal line found in the RP.

5 Entr Shannon entropy-based on the probability p(l) to find a
diagonal line of exactly length l in the RP.

6 LAM Laminarity. Ratio between the recurrence points forming
the vertical structures and the entire set of recurrence
points

7 TT Average length of the vertical structures in the RP.

8 Vmax Maximal length of the vertical lines in the RP.

9 RTmax Maximal white vertical line length in the RP.

10 T2 Recurrence time of 2nd type. T2 contains information
about the time distance between the beginning of
subsequent recurrence structures in the RP.

11 RTE Recurrence Time Entropy. It contains information about
the periodicity characteristics of a signal related to the
RP in the context of dynamic systems.

12 Clust Clustering coefficient. Average of the clustering
coefficients for the states in the RP.

13 Trans Transitivity. Transitivity of a complex network is related
to the probability that two neighbors of any state in the
RP are also neighbors, and this measure indicates how
much a network is locally clustered.

approach together with the size of the sliding window 𝑊𝑆 and the
machine learning parameters. An additional hyper-parameter is the
threshold 𝑇ℎ𝑟, which is described below. As mentioned before, the delay
arameter is set to 1.

The next step of the approach is to build the RPs for each sliding
indow. The RP is a two dimensional representation created by cal-

ulating the mutual distances between embedded vectors of the phase
pace and comparing it to a threshold. In other words, the RP is a two-
imensional graphical representation of the distances matrix 𝐷 = 𝑑𝑖,𝑗 ,
here the pixel located at coordinates (i, j) is shaded according to the
istance between the 𝑖𝑡ℎ and 𝑗𝑡ℎ vectors and a fixed cutoff value 𝑇ℎ𝑟.
he meaning of the RP is to provide information about the temporal
orrelation of phase space points since each horizontal coordinate i in
P refers to the state of the system at i and each vertical coordinate j
efers to the state in j. Such temporal correlation indicates the system
ynamic status in each sliding window. The assumption of the approach
s that a spoofing attack would modify the sequence of the inter-arrival
imes which in turn represents the dynamic status of the in-vehicle
raffic. Then, features extracted from the RP may have discriminating
ower to distinguish traffic windows that contain spoofing attacks from
ormal traffic conditions.

The final step is to implement the RQA and extract features from
he generated recurrence plots. The RQA features described in Table 3
re defined from [16,32] and they are used in the approach proposed
n this paper. For the reproducibility of the results, the MATLAB code
rovided by the authors of [16,32] is used in this study. In the table,
he first column is a numeric identifier used to identify the feature
n the subsequent sections of this paper and especially in Section 5.
he second column is an acronym of the feature and the third column
rovides a brief description of the feature. A more detailed explanation
f these features can be found in [16].

.3. Machine learning algorithms and metrics of evaluation

Three different machine learning algorithms were used for the
nalysis. The algorithms were selected on the basis of their usages in
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the literature, on the need to address a heavy unbalanced data set
where the traffic samples related to traffic are much less than the
traffic samples related to normal traffic, and on the need for computing
efficiency. Both the Naive Bayes algorithm and the Decision Tree (DT)
algorithms are known to be robust against unbalanced data sets and
quite scalable for large data sets (as in this case where the data sets are
composed of millions of records). The DT algorithm was used in [26]
for the implementation of the IDS on the same CarHack2018 data set
used in this paper. The K Nearest Neighbor (KNN) algorithm was also
used in the evaluation because it is relatively simple and it is commonly
used as a baseline. It was used in [27] for the implementation of the
IDS algorithm in the CarHack2018 data set.

The hyper-parameters for the DT algorithm were defined as fol-
lowing: the maximal number of decision splits per tree (this hyper-
parameter is called 𝑁𝐵 in the rest of this paper) and the split cri-
terion among the choice of Gini’s diversity index, twoing rule and
cross-entropy. The kernel type was the hyper-parameter identified for
the Naive Bayes algorithm. The hyper-parameter for the KNN is the
parameter K. Euclidean distance was used.

A 3-fold approach was used for classification, where 1/3 of the data
set was used for test, and 2/3 was used for training and validation. The
overall classification process was then repeated 10 times, each time
with different training and test sets. The final results were averaged.
The metrics of evaluations are: the Error Rate (ER) expressed as 1 −
(𝑇𝑃 +𝑇𝑁)∕(𝑇𝑃 +𝑇𝑁+𝐹𝑃 +𝐹𝑁), the FPR expressed as 𝐹𝑃∕(𝐹𝑃 +𝑇𝑁),
he FNR expressed as 𝐹𝑁∕(𝐹𝑁+𝑇𝑁), the ROC, and the AUC. The ROC
urve is created by plotting the True Positive Rate (TPR) against the
PR at various threshold settings and the AUC is the area under the ROC
urve. A higher value of AUC means a higher detection performance. TP
s the number of true legitimate traffic samples correctly identified as
egitimate traffic. FP is the number of traffic samples falsely predicted
s legitimate traffic but actually related to an attack. The design of the
DS should minimize FP to ensure that attacks are correctly identified.
N is the number of traffic samples falsely predicted as attack traffic
ut actually related to legitimate traffic. The design of the IDS should
inimize FN because it increases the operational burden of an admin-

strator: s(he) has to react to the IDS notification to see if there was
eally an attack even if it was not the case. Finally, TN represents the
umber of traffic attack related samples, which are correctly identified
s attacks.

Regarding the simulation environment, the analysis on the data
ets was performed using MATLAB language on a laptop with Intel
rocessor i7-8550 CPU with a 1.8 GHz clock and 16 GB of memory.

. Results

This section provides the results on the application of RQA for the
wo data sets used in the analysis. This section is divided into three
ain sub-sections. Section 5.1 provides an analysis of the impact of

he hyper-parameters on the detection accuracy. Section 5.2 compares
he results obtained with this approach based on RQA with the results
btained with the entropy measures commonly used in the research
iterature. Finally, Section 5.3 provides the results obtained with this
pproach based on the RQA with the results obtained in the literature
n the same data sets CarHack2018 and CarHack2020 used in this
aper, taking into consideration that completely different approaches
nd data (e.g., CAN-ID instead of time differences) might be used.

.1. Analysis of the impact of the hyper-parameters

An initial analysis was conducted on the optimal choice of the
𝑆 window size and the M and 𝑇ℎ𝑟 parameters defined in RQA. The

elay parameter was set to 1 to consider all the elements in the time
eries because an attack may be present even on a single CAN-bus
essage. A grid-search approach was used with a range of parameters
492
of 𝑊𝑆 = [100,… , 1500], a range of 𝑀 = [2, 3, 4, 6, 8, 12, 14] and a range
of 𝑇ℎ𝑟 = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95].

The following figures presented in this section show the results for
a specific set of hyper-parameters while keeping fixed one or more
hyper-parameters.

Fig. 5 are color maps, which show the impact of the choice of the
parameters M and 𝑇ℎ𝑟 for the specific value of 𝑊𝑆 = 500. The Decision
Tree ML algorithm was used to implement the detection process (a
performance analysis of the different ML algorithms is presented later
in this section). The optimal values of M and 𝑇ℎ𝑟 are indicated in the
title of the figures. It can be seen from these figures that the range
of values adopted for the optimization phase is adequate since the
optimal values of M and 𝑇ℎ𝑟 are located well within the border of
the map. From these initial results, it can be seen that the detection
accuracy of the proposed method is higher for the CarHack2018 data
sets rather than the CarHack2020 data sets. This is reasonable since
they have been created in different conditions. These results can be
used as an indication of the optimal values of the hyper parameters for
a practical deployment of the IDS based on RQA presented in this paper.
On the other side, different vehicle models or driving scenarios may
have different values of the hyper-parameters since they are dependent
on the architecture of the vehicle and its characteristics (e.g., type
of engine). From a practical point of view, the optimal values should
be identified in a training phase of the IDS algorithm and eventually
repeated in different times/conditions of the vehicle operation. Such
practical considerations are not specific to the approach presented in
this paper, but they are common to vehicular IDSs based on machine
learning [1,5,6].

Then, the detection performance of the proposed approach was
evaluated for a wide range of values of 𝑊𝑆 . The trade-off in defining
the range is that smaller values of 𝑊𝑆 increase the time needed for the
data analysis because the time series is segmented into a large number
of segments while larger values of 𝑊𝑆 can make more challenging the
identification of the specific time of the attack. In addition, since a
supervised ML approach was adopted, larger values of 𝑊𝑆 decrease the
samples space since the overall duration of the data set is constant. The
range of values of 𝑊𝑆 was chosen on the basis of these considerations
and the adoption of similar values in the literature.

5.2. Comparison with entropy measures

The performance of the proposed approach based on the use of RQA
was also compared in the following set of figures with the entropy-base
approach where Renyi and Shannon entropy measures were used.

Figs. 6 and 7 show such comparison for the CarHack2020 data set
(respectively for driving and stationary vehicle) while Figs. 8 and 9
show the comparison for the CarHack2018 data set (Gear and RPM
spoofing attacks). The figures show the results for the metrics of accu-
racy, FPR, and FNR. As for the previous results, the DT ML algorithm
was used to implement the detection process (a performance analysis
of the different ML algorithms is presented later in this section)

It can be seen that the proposed approach outperforms significantly
the use of entropy-based measures for both data sets. This is a sig-
nificant result, because it shows that RQA can successfully replace
entropy-based measures in in-vehicle intrusion attack systems based on
the use of CAN-bus message time-interval information because of its
higher detection performance.

On the other side, it can be seen that the RQA based approach
performs very well in absolute terms (detection accuracy higher than
95% for most of the values of 𝑊𝑆 ) in the CarHack2018 data set while
it performs less (but still better than entropy-based measures) in the
CarHack2020 data set. In particular, the FPR is quite poor for the
entropy measures (almost total failure in recognizing normal traffic),
while it is significant even for RQA. As a first consideration, it is noted
that it is the first time (to the knowledge of the author) that a time-
interval approach was used on the CarHack2018 and it may not be
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Fig. 5. Impact of M and 𝑇ℎ𝑟 hyperparameters on detection accuracy for 𝑊𝑆 = 500. The
color bar indicates the accuracy values. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

particularly suitable for this data set (other fields in the CAN-bus mes-
sages like the arbitration field may have higher discriminating power).
On the other side, the results show that the RQA based approach is
more stable than the entropy-based approach since the FPR and FNR
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are more balanced. As shown in the accuracy subplot, the RQA based
approach has an overall detection performance, which is better than
the one obtained with the entropy-based measures (both Renyi and
Shannon entropy measures). It is also noted for both data sets that there
is no need to select high values of 𝑊𝑆 because the optimal results are
obtained with 𝑊𝑆 in the 400–800 range. The results obtained in the
CarHack2018 data set are more stable than the CarHack2020 data set,
which could also point to a possible explanation of the poor relative
performance of the time-interval based approach. The performance of
the proposed approach based on the sliding window and the extraction
of features (either RQA or entropy-based) may be lower if the data
set is not uniformly distributed and it is dispersed. Then, a potential
reason for the reported results is that the CarHack2018 data set may
be less dispersed than the CarHack2020 data set for the time interval
information of the CAN-bus message. To prove this assumption, a
simple check was implemented by calculating the variance of the entire
time series for both data sets. The variance of the stationary time series
of the CarHack2020 data set was calculated to be 𝑉 𝑎𝑟 = 1.7030. The
variance of the driving time series of the CarHack2020 data set was
calculated to be 𝑉 𝑎𝑟 = 3.5531. The variance of the gear spoofing attack
time series of the CarHack2018 data set was calculated to be 𝑉 𝑎𝑟 =
0.2514 and the variance of the RPM spoofing attack time series of the
CarHack2018 data set was calculated to be 𝑉 𝑎𝑟 = 0.1799. These values
seem to confirm the initial assumption that the approach proposed in
this study is more applicable (i.e., provides better accuracy and more
stable results) when the variance of the time series is in the range of
the CarHack2018 data set.

All the previous results have been obtained using the DT algorithm,
which is one of the three selected ML algorithms. While it is not the
intention of this study to conduct a detailed analysis of the impact
of the choice of the ML algorithm since the focus of this study is
on the use of RQA in IDS, a comparison of DT with Naive Bayes
and KNN is presented in Fig. 10 and the related subplots. For space
reasons, only the accuracy metric is used for comparison. All the three
machine learning algorithms have been optimized on the basis of the
method described in Section 4.3 and the range of ML hyper-parameters
described in that section. We note that the KNN algorithm has a slightly
better performance than the DT algorithm for the CarHack2020 data
sets. As a consequence, it is used in the subsequent results in this
section.

On the basis of the previous results, which show that KNN has
a superior performance than DT for the CarHack2020 data set, the
classification process was executed again for the different values of
hyper-parameters.

Table 4 provides a summary of the optimal results obtained across
the range of the hyper-parameters M, 𝑇ℎ𝑟 and 𝑊𝑆 for the RQA based
approach and the entropy measures for all the considered four time
series of the two data sets CarHack2018 and CarHack2020.

The improvement in accuracy of the proposed approach based on
RQA can come at the cost of the higher computing complexity in
comparison to the entropy measures. An empirical indication of the
computing costs on the application of RQA to the data sets shows
that the calculation of the RQA features and the related classification
time is from 15 times to 18 times the time requested to calculate the
entropy measures and perform the related classification. While this
higher computing time can affect both the training phase and testing
phase, it should be considered that it is still a limited time in absolute
terms. For example, the calculation of a sliding window of 1500 CAN-
bus messages (the longest window considered in the study) using RQA
still executes in 0.4 s on a laptop with an Intel main processor i7-8550
with a 1.8 GHz clock.

To provide a more detailed assessment of the performance of the
proposed approach based on the RQA features, the ROC figures and the
related AUC values were calculated using the optimal values identified
in the second column of Table 4. Two sets of ROCs are provided in

the following figures for both data sets. The first set of ROCs shown in
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Fig. 6. CarHack2020Dri Driving data set. Accuracy, FPR and FNR for optimal values of M and 𝑇ℎ𝑟 for RQA features, Renyi entropy of different orders, and Shannon entropy
features for different values of 𝑊𝑆 (size of the sliding window).
Fig. 7. CarHack2020Sta stationary data set. Accuracy, FPR and FNR for optimal values of M and 𝑇ℎ𝑟 for RQA features, Renyi entropy of different orders and Shannon entropy
features for different values of 𝑊𝑆 (size of the sliding window).
Fig. 8. CarHack2018Gear data set. Accuracy, FPR and FNR for optimal values of M and 𝑇ℎ𝑟 for RQA features, Renyi entropy of different orders and Shannon entropy features for
different values of 𝑊𝑆 (size of the sliding window).
Fig. 11 compares the performance across sliding windows of different
sizes 𝑊𝑆 while the second set of ROCs shown in Fig. 12 compares the
performance of the RQA based approach against the approach based
on entropy features. The legends in both figures show the related
AUC value for each ROC. Only a subset of 𝑊𝑆 values, which are
more relevant to the analysis are shown (𝑊 = 400 ∶ 900) are used
𝑆
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to create the figures to avoid a cluttering effect in the figures. The
results presented in Fig. 11 confirm the similar results presented in the
previous figures: the parameter 𝑊𝑆 has an impact on the detection of
the attack. While the ROCs for the CarHack2018 data set demonstrates
the excellent capability of the proposed approach to detect spoofing
attacks, the ROCs for CarHack2020 data set show a slighter worst
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Fig. 9. CarHack2018RPM data set. Accuracy, FPR and FNR for optimal values of M and 𝑇ℎ𝑟 for RQA, Renyi entropy of different orders and Shannon entropy features for different
values of 𝑊𝑆 (size of the sliding window).

Fig. 10. Comparison of the application of different machine learning algorithms for the two different data sets.

Fig. 11. ROCs and related values of AUC for different sizes of the sliding windows (different values of 𝑊𝑆 ). The optimal hyper-parameters values and ML algorithms used to
generate the ROCs are identified in Table 4.
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Table 4
Summary of the optimal detection results with the related values of the
hyper-parameters and choice of ML.

Data set and features Optimal parameters Acc. FPR FNR

CarHack2020Dri

RQA KNN, 𝐾 = 8, 𝑀 = 2,
𝑇ℎ𝑟 = 0.3, 𝑊𝑆 = 800

0.914 0.0337 0.0316

Renyi entropy 𝑜 = 2
[21]

DT, Gini’s diversity
index, 𝑁𝐵 = 12,
𝑊𝑆 = 1300

0.86 0.9926 0.0017

Renyi entropy 𝑜 = 3
[21]

DT, Gini’s diversity
index, 𝑁𝐵 = 12,
𝑊𝑆 = 1200

0.853 0.991 0.0013

Renyi entropy 𝑜 = 4
[21]

DT, Gini’s diversity
index, 𝑁𝐵 = 10,
𝑊𝑆 = 1300

0.853 0.993 0.0009

Shannon entropy
[10,13]

DT, Gini’s diversity
index, 𝑁𝐵 = 14,
𝑊𝑆 = 1400

0.853 0.999 0.0013

CarHack2020Sta

RQA KNN, 𝐾 = 7, 𝑀 = 3,
𝑇ℎ𝑟 = 0.3, 𝑊𝑆 = 600

0.9271 0.02575 0.0479

Renyi entropy o = 2
[21]

DT, Gini’s diversity
index, 𝑁𝐵 = 10,
𝑊𝑆 = 1400

0.8582 0.999 0.0009

Renyi entropy o = 3
[21]

DT, Gini’s diversity
index, 𝑁𝐵 = 10,
𝑊𝑆 = 1400

0.8587 0.999 0.0007

Renyi entropy o = 4
[21]

DT, Gini’s diversity
index, 𝑁𝐵 = 10,
𝑊𝑆 = 1400

0.858 0.999 0.0006

Shannon entropy
[10,13]

DT, Gini’s diversity
index, 𝑁𝐵 = 8,
𝑊𝑆 = 1400

0.876 0.999 0.0016

CarHack2018 Gear

RQA DT, 𝑁𝑏 = 10, 𝑀 = 6,
𝑇ℎ𝑟 = 0.9, 𝑊𝑆 = 400

0.9992 0.0135 0.0032

Renyi entropy o = 2
[21]

DT, Gini’s diversity
index, 𝑁𝑏 = 12
𝑊𝑆 = 1400

0.8341 0.6528 0.0109

Renyi entropy o = 3
[21]

DT, Gini’s diversity
index, 𝑁𝑏 = 12
𝑊𝑆 = 1400

0.8252 0.6968 0.0087

Renyi entropy o = 4
[21]

DT, Gini’s diversity
index, 𝑁𝑏 = 12
𝑊𝑆 = 1400

0.8234 0.6869 0.0142

Shannon entropy
[10,13]

DT, Gini’s diversity
index, 𝑁𝑏 = 10
𝑊𝑆 = 1400

0.8334 0.5099 0.0574

CarHack2018 RPM

RQA DT, 𝑁𝑏 = 12, 𝑀 = 6,
𝑇ℎ𝑟 = 0.8, 𝑊𝑆 = 600

0.9933 0.0116 0.0020

Renyi entropy o = 2
[21]

DT, Gini’s diversity
index, 𝑁𝑏 = 10
𝑊𝑆 = 1400

0.8436 0.5777 0.0026

Renyi entropy o = 3
[21]

DT, Gini’s diversity
index, 𝑁𝑏 = 12
𝑊𝑆 = 1400

0.8289 0.6356 0.0015

Renyi entropy o = 4
[21]

DT, Gini’s diversity
index, 𝑁𝑏 = 12
𝑊𝑆 = 1300

0.8239 0.6332 0.0092

Shannon entropy
[10,13]

DT, Gini’s diversity
index, 𝑁𝑏 = 8
𝑊𝑆 = 1300

0.8078 0.5405 0.0649

detection capability. The results presented in Fig. 12 do also confirm
the superior performance of the RQA based approach in comparison
to the entropy-based approaches by comparing the values of the AUCs.
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Table 5
Comparison with the literature of this approach on the CarHack2018 data set.

Reference Acc. FPR FNR Sliding windows CAN-bus field

CarHack2018 DoS

This study 0.9836 0.0386 0.0063 Yes Time
[14] 0.979 NA NA No CAN-ID
[11] 1.00 NA NA Yes CAN-ID
[28] 0.9728 NA 0.038 Yes Payload
[8] 0.997 NA 0.0011 No CAN-ID

CarHack2018 Gear

This study 0.9992 0.0135 0.0032 Yes Time
[14] 0.962 NA NA No CAN-ID
[28] 1.00 0 0 Yes Payload
[8] 0.995 NA 0.0011 No CAN-ID

CarHack2018 RPM

This study 0.9933 0.337 0.0316 Yes Time
[14] 0.98 NA NA No CAN-ID
[28] 1.00 0 0 Yes Payload
[8] 0.997 NA 0.0006 No CAN-ID

CarHack2018 Fuzzy

This study 0.9849 0.0297 0.0073 Yes Time
[14] 0.98 NA NA No CAN-ID
[28] 0.9517 NA 0.05 Yes Payload
[8] 0.9982 NA 0.0035 No CAN-ID

The AUCs of the RQA based approach are higher than the ones obtained
with the entropy measures.

Then, it is also evaluated what is the performance of each RQA
feature across the two data sets. Fig. 13 provides the results of such an
evaluation for the optimal parameters in Table 4 and for 𝑊𝑆 = 600.
It can be seen from Fig. 13 that for the CarHack2020 data set, the
performance of each feature is rather similar with the feature id = 8 and
id = 9 slightly better than others. The results for the CarHack2018 data
set are less uniform but with the feature id = 8 still providing a higher
accuracy than the other features. As described in Table 3, feature id =
8 is the maximal length of the vertical lines in the RP and the maximal
white vertical line length in the RP. A potential explanation for the
superior performance of the feature id = 8 is that the implementation
of the spoofing attacks modifies more significantly the vertical lines of
the RPs than the other characteristics of the RP.

5.3. Comparison with the literature results on the data sets CarHack2018
and CarHack2020

Finally, the results on the data sets used in this paper are compared
with the results in the literature on the same data sets and they are
presented in Tables 5 and 6 respectively for the data sets CarHack2018
and CarHack2020. For clarity, it is also reported the type of CAN-bus
data used by the approach from the literature (e.g., CAN-ID) and if it
uses a sliding window.

It is noted that the comparison of results in Table 5 is only indicative
because most of the papers using these data sets do not use a sliding
window approach (which may decrease detection accuracy with the
benefit of dimensionality reduction) or they use different information
(the CAN-ID data or the CAN-bus payload data). As stated in the
abstract and introduction, this paper focuses on spoofing attacks but
for completeness, we also report in this table the application of the
proposed approach to the other attacks: in particular, the DOS and
Fuzzy attacks in CarHack2018. The reason is also that these attacks
are often investigated in the CarHack2018 data set used by other
researchers.

Table 5 shows that the approach proposed in this paper is quite
competitive in comparison to other approaches presented in the litera-
ture, taking into consideration that this approach does not require the
processing of the CAN-ID data or CAN-bus payload data and it only
relies on the time differences of the CAN-bus messages. It is interesting
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Fig. 12. ROCs and related values of AUC for the different approaches based on RQA and entropy-based features. The optimal hyper-parameters values and ML algorithms used
o generate the ROCs are identified in Table 4.
Fig. 13. Accuracy of each RQA feature across the two data set and the four time series. The optimal values of the hyper-parameters from Table 4 were used with 𝑊𝑆 = 600.
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o see that each approach has its own strength and weakness against
ifferent attacks. In particular, [28] is particularly effective for the
PM and GEAR spoofing attacks where it achieves perfect detection,
ut it is less performing in comparison to this approach for the DOS
nd Fuzzy attacks. This result seems to indicate that a combination
f approaches could be an optimal strategy for the implementation
f IDS in in-vehicle networks, where the strengths of the different
pproaches could be combined. The overall best performance (i.e., if
ll the attacks are used) is obtained by [8], where a sophisticated Deep
earning (DL) method was used. In a way, this confirms the superior
erformance of DL approaches used in many fields (i.e., primarily in
mage analysis), but it must be taken in consideration the considerable
omputing resources, which must be deployed in the vehicle for this
urpose. In the automotive sector, this deployment may not be very
ractical and a Cloud DL could be used, but this may require the
ransmission of the CAN-bus data information from the vehicle to the
loud which can require significant connectivity resources.

Table 6 summarizes the results for the CarHack2020 data set where
lso the DoS (i.e., Flooding) and Fuzzy (i.e., Fuzzing attacks) were
onsidered for the driving and stationary case (i.e., CarHack2020Sta
nd CarHack2020Dri).

The comparison with the only published study [30] (at the time of
riting this paper) is somewhat difficult because the authors of [30]

ave used a different approach for using the data set by merging the a

497
wo CarHack2020Dri and CarHack2020Sta data sets and merging all
he attacks together. In addition, the authors of [30] use the CAN-ID
nd the CAN-bus payload rather than the time difference and they do
ot use a sliding window approach. Overall, it is a radically different
pproach from this study and the results are not directly comparable.
able 6 shows that the flooding and the fuzzing attacks can be detected
ith higher accuracy than the spoofing attacks using the approach
roposed in this paper.

. Conclusions

In this paper, we have investigated the application of RQA to the
roblem of spoofing attack detection in in-vehicle networks using a
liding window attack and the inter-arrival time between CAN-bus
essages. This approach is efficient because it does not require the
rocessing of the CAN-bus messages and the sliding window provides
dimensionality reduction proportional to the size of the window. The

pproach is compared with other popular sliding window approaches
n the literature for the analysis of the traffic in in-vehicle networks
ased on the application of entropy measures. The experimental results
n two recent (2018 and 2020) public data sets show that the RQA
ased approach is able to significantly outperform the entropy-based
pproaches and it is also more stable (i.e., better balance between FPR

nd FNR) in the CarHack2020 data set. In addition, it is competitive
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Table 6
Comparison with the literature of this approach on the CarHack2020 data set.

Reference Acc. FPR FNR Sliding windows CAN-bus field

This study for CarHack2020 Driving DoS
(Flooding)

0.9988 0.0078 0 Yes Time

This study for CarHack2020 Driving
Spoofing

0.914 0.0337 0.0316 Yes Time

This study for CarHack2020 Driving
Fuzzy (Fuzzing)

0.9952 0.0278 0.0020 Yes Time

This study for CarHack2020 Stationary
DOS (Flooding)

0.9989 0.0066 0 Yes Time

This study for CarHack2020 Stationary
Spoofing

0.9271 0.0386 0.0063 Yes Time

This study for CarHack2020 Stationary
Fuzzy (Fuzzing)

0.9919 0.0457 0.0019 Yes Time

Approach from [30] using SVM with
combined attacks and data sets

0.9532 NA 0.0442 No CAN-ID and Payload

Approach from [30] using Deep Learning
with combined attacks and data sets

0.9810 NA 0.0196 No CAN-ID and Payload
against other approaches (based or not based on the sliding windows)
on the same public data sets for spoofing attacks but also for other
attacks commonly investigated by the research community (e.g., DoS
and Fuzzy attacks). The proposed approach based on the time interval
information and the sliding window with RQA manages to obtain a very
high detection accuracy (more than 99%) in the CarHack2018 data set
for both spoofing attacks while the same approach manages to obtain
an accuracy higher than 91% in the CarHack2020 data set. A potential
reason for this discrepancy has been linked to the distribution of the
time intervals in the time series and a simple estimate metric for the
applicability of the proposed approach has been identified.

To the best knowledge of the author, this is the first time that RQA
is applied to the problem of intrusion detection for spoofing attacks in
in-vehicle networks. These promising results suggest that RQA related
features should be taken into consideration for the implementation of
efficient in-vehicle intrusion detection systems as they provide signifi-
cantly more discriminative power than entropy-based measures which
are commonly used in the literature.

Future developments can be implemented in different directions.
One direction is to investigate the extension of the basic RQA used in
this study to more sophisticated implementations like the fuzzy RQA.
Another development could try to solve the need to find the optimal
values of the hyper-parameters by applying meta-heuristics algorithms
or adaptive methods (e.g., adaptive sliding window).
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